
Fault Tolerance Placement in the Internet of Things

ANASTASIIA KOZAR, Technische Universität Berlin, Germany

BONAVENTURADELMONTE∗,Observe Inc., USA
STEFFEN ZEUCH, Technische Universität Berlin, Germany

VOLKERMARKL, Technische Universität Berlin, DFKI GmbH, Germany

Today’s IoT applications exploit the capabilities of three different computation environments: sensors, edge, and

cloud. Ensuring fault tolerance at the edge level presents unique challenges due to complex network hierarchies

and the presence of resource-constrained computing devices. In contrast to the Cloud, the Edge lacks high

availability standards and a persistent upstream backup. To ensure reliability, fault tolerance mechanisms have

to be deployed on the edge devices along with processing operators competing for available resources. However,

existing operator placement strategies are not aware of fault tolerance resource requirements, and existing fault

tolerance approaches are not aware of available resources. This miscommunication in resource-constrained

environments like the Edge leads to underprovisioning and failures.

In this paper,we present a resource-aware fault-tolerance approach that takes the unique characteristics of the

Edge into account toprovide reliable streamprocessing.To this end,wemodel fault tolerance as anoperator place-

ment problem that uses multi-objective optimization to decide where to backup data. As opposed to existing ap-

proaches that treat operator placement and fault tolerance as two separate steps, we combine them and showcase

that this is especially important for low-endedgedevices.Overall, ourapproacheffectivelymitigatespotential fail-

ures and outperforms state-of-the-art fault tolerance approaches by up to an order of magnitude in throughput.

CCS Concepts: • Information systems→ Streammanagement.

Additional KeyWords and Phrases: Data Management, Stream Processing, Fault Tolerance

ACMReference Format:
Anastasiia Kozar, Bonaventura Del Monte, Steffen Zeuch, and Volker Markl. 2024. Fault Tolerance Place-

ment in the Internet of Things. Proc. ACM Manag. Data 2, 3 (SIGMOD), Article 138 (June 2024), 29 pages.

https://doi.org/10.1145/3654941

1 INTRODUCTION
The Internet of Things (IoT) is an evolving paradigm that is involved in myriad areas such as 5G [67],

the Electrical Grid Industry [44], AutonomousVehicle Technology [70], Smart Cities [38], andHealth-

care [37]. The number of devices that build up the IoT is projected to reach 27 billion by 2025 [39].

Furthermore, Gartner predicts that 75% of enterprise-generated data will be created and processed

outside a traditional data center or Cloud [10]. The fast-growing number of interconnected devices

motivated the emergence of unified sensor-edge-cloud (USEC) systems [59, 69, 81]. These systems

∗
The work was carried while being employed at Technische Universität Berlin.

Authors’ addresses: Anastasiia Kozar, Technische Universität Berlin, Berlin, Germany, anastasiia.kozar@tu-berlin.de;

Bonaventura Del Monte, Observe Inc., Berlin, USA, venturadelmonte@gmail.com; Steffen Zeuch, Technische Universität

Berlin, Berlin, Germany, steffen.zeuch@tu-berlin.de; Volker Markl, Technische Universität Berlin, DFKI GmbH, Berlin,

Germany, volker.markl@tu-berlin.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/6-ART138

https://doi.org/10.1145/3654941

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

https://doi.org/10.1145/3654941
https://doi.org/10.1145/3654941

138:2 Anastasiia Kozar, Bonaventura Del Monte, Steffen Zeuch, & Volker Markl

0 100 200 300 400 500 600 700
Time (s)

0.0M

0.2M

0.4M

0.6M

0.8M

1.0M

1.2M

1.4M

Th
ro

ug
hp

ut
 (T

up
le

s/
S

ec
)

35 queries

27 queries

WITHOUT FT
WITH FT

Fig. 1. Comparison of stateful query deployment with and without fault tolerance in Flink.

evolve from a cloud-centric approach by pushing down the computation to the resource-constrained

and unreliable edge devices.

Ensuring reliable processing in such a heterogeneous environment is challenging due to deep

network hierarchies, network unreliability, and resource-constrained computing nodes. Fault tol-

erance in the Cloud benefits from high availability standards and persistent upstream backups,

such as implemented in Kafka [64]. In contrast to cloud environments, the Edge lacks a universally

accessible storage infrastructure, face limitations in resource scalability, and are constrained by the

processing power of edge devices. To guarantee reliability, USEC systems deploy fault tolerance on

every system device, decreasing the available resources of edge devices. However, Stream Processing

Engines (SPEs) place streaming operators on these devices independently, completely overlooking

the resource consumption resulting from fault tolerance.

In Figure 1, we illustrate an example where unawareness of fault tolerance leads to underprovi-

sioning, ultimately resulting in a system failure. In this experiment, we submit stateful queries from

a cluster monitoring workload [2] to Flink [23] with and without fault tolerance running. The

experiment runs on eight Rasberry Pi devices with 2GB RAM connected to a middle-sized server

with 7GB RAM.When we disable fault tolerance, we successfully deploy up to 35 queries. However,

whenwe enable fault tolerance, we only successfully deploy up to 26 queries. The 27th query leads to

a system failure because the device runs out of memory, which happens due to the wrong estimation

of the operator placement algorithm in Flink. The estimation is inaccurate as it does not consider that

fault tolerance occupies additional memory. Even worse, in a USEC environment, where transient

failures are common, the deployment process would not stop after the failure of a single worker. The

master nodewould have continued deploying queries, terminating resource-constrained edge devices

one by one.Overall, this experiment highlights twomain problems of running fault tolerance inUSEC

environments: P1: running fault tolerance on every device reduces a significant part of available

resources from processing, and P2: ignorance of fault tolerance costs results in underprovisioning.
In this paper, we present a holistic fault tolerance placement (FTP) that treats fault tolerance

as a first-class operator and places it selectively as a solution to the underlying Multi-objective

optimization (MOO) problem. FTP scores potential fault tolerance placements (P2) based on two con-

flicting goals: utilized resources and provided reliability. Once FTP identifies the optimal placement,

it propagates estimated resource requirements to the operator placement strategy (P1). To ensure

FTP’s compatibility with both heuristic and cost-based operator placement approaches, we divide

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

Fault Tolerance Placement in the Internet of Things 138:3

it into Naive FTP (NFTP) andMulti-objective FTP (MFTP). NFTP simplifies the optimization problem

by focusing on a single objective and uses heuristic resource estimates. In contrast, MFTP leverages

cost-based upper-bound resource estimates and hardware characteristics to compute placement

scores. Additionally, we introduce MFTP-H, which employs hyperparameter tuning and runtime

adaptation to fine-tune resource usage in response to system demands.

We evaluate FTP approaches in NebulaStream (NES), which is a USEC system that explores

hardware-tailored code compilation and a highly dynamic execution model [31, 36, 81]. Our evalua-

tion demonstrates that NES, alongwith our efficient implementation of fault tolerance, achieves up to

x67 throughput compared to other state-of-the-art solutions. Employing FTPs to NES prevents poten-

tial underprovisioning and failures. Moreover, it shows that FTPs require less additional placement

decision time by an order of magnitude than incorporating the reliability constraint into existing

operator placement strategies. Finally, MFTP-H helps improving the overall system throughput by

up to 18% and the number of stateful queries deployed by 30% compared to existing fault tolerance

placement approaches. In summary, we make the following contributions:

• Wemodel the FTP problem as a Pareto set and propose single- and multi-objective solutions

(Section 3).

• Wedefine a cost space for every fault tolerance approach and introduce an additional parameter

to estimate reliability (Section 4).

• We describe naive heuristic-based and elaborative cost-based FTP solutions with adaptive

optimizations (Section 5).

• Wedemonstrate that FTPsavoidunderprovisioningandadaptiveoptimizations improve system

resource management (Section 6).

2 BACKGROUND
In the following section, we introduce concepts of data streaming (Section 2.1). Additionally, we

discuss existing operator placement (Section 2.2) and recovery approaches (Section 2.3).

2.1 Stream Processing
SPEs handle infinite sequences of data streams (𝑠 ∈𝑆) composed of relational tuples (𝑡 ∈𝑇) belonging
to the same logical type [24]. Each tuple (𝑡 = (𝜎,𝜋)) includes a timestamp (𝜎 ∈ 𝑁 +) and a payload (𝜋)
assignedbyeitheranexternalphysicaloran internal logical clock.Tuples traverseSPEs inapotentially

out-of-ordermanner (∀𝑡𝑖 , 𝑡 𝑗 with i < j,𝜎𝑖 <𝜎 𝑗 is not guaranteed), due to variations in event timestamps.

Queries in these systems adhere to the streaming relational model [16] and encapsulate sets of

logicaloperatorsdistributedacross interconnectedphysicalnodes (𝑛 ∈𝑁) viadatachannels.Operators

(𝑜 ∈𝑂) process data within SPEs, generating output tuples based on execution semantics. Notably,

there are two special operators: sources (𝑐 ∈𝐶) producing data streams and sinks (𝑓 ∈𝐹) consuming

them. In neighboring nodes, the one closer to the source is considered the upstream node [40].

2.2 Operator Placement Strategies
Over the last decades, plenty of operator placement strategies were developed explicitly targeting

SPEs. These strategies aim to optimize the Quality of Service (QoS) metrics depending on a system

setup and user requirements. From themethodological perspective, the operator placement strategies

can be grouped into the following classes:

HeuristicMethods. This class of operator placement strategies is widely adopted in open-source

industrial frameworks [15, 18, 22, 45] tailored to specific environments and workloads. The heuris-

tics methods vary from simple first-fit, round-robin, and bottom-up algorithms to resource-aware,

multi-layer heuristics [29, 42, 60, 61, 63].

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

138:4 Anastasiia Kozar, Bonaventura Del Monte, Steffen Zeuch, & Volker Markl

Cost-based Approaches. Cost-based methods, including search-based, greedy, and graph-

theoretic approaches, aim to optimize system properties, which are typically expressed within

a cost space. This cost space integrates various parameters, including queueing delay, execution,

transmission, enactment, and migration cost in the optimization process [3, 17, 56, 62]. Search-based

operator placement strategies find an optimal placement using local search, tabu search, and simu-

lated annealing [42, 73]. Greedy approaches employ cost-based optimization to enhance differentQoS

metrics [14, 19, 79] through the use of efficient heuristics. Finally, graph-theoretic methods leverage

cost-based techniques, employing weighted dataflow graphs to enhance various QoSmetrics [48, 82].

2.3 Recovery Approaches
Different SPEs have varying high-availability requirements, characterized by processing guarantees

such as none, at-least-once, at-most-once, and exactly-once. Existing fault tolerance solutions, includ-

ing Upstream Backup, Passive Standby, and Active Standby, treat these guarantees as QoS metrics.

UpstreamBackup.One of the most common fault tolerance techniques in distributed stream

processing systems is data buffering at the upstream nodes, acting as backups for downstream nodes

[11, 26, 74]. They log elements in their output queues until downstream nodes process them entirely.

In case of a failure, upstream nodes resend stored tuples. This method relies on the assumption

of monotonically increasing timestamps and uses punctuation techniques like lowwatermarks to

manage late data. [12].

Passive Standby. Systems such as Flink, Spark, and Heron support the passive standby approach

[46, 55, 57, 66, 76, 77]. In this method, primary nodes periodically send their state to secondary nodes.

In the event of a primary node failure, secondary nodes load the latest state and resume processing.

State includes input, local states of stateful operators, and node output. Synchronization is achieved

through state updates during global checkpointing [40].

Active Standby. SPEs following the active standby approach [20, 27, 41, 49], designate secondary
nodes as hot standby states. These secondary nodes process elements in parallel with primary nodes.

Secondary nodes log output and take over in the case of primary node failure, sending their output

to downstream operators.

3 FAULT TOLERANCE PLACEMENT PROBLEM
Highly volatile disaggregated environments with heterogeneous devices change priorities in objec-

tives that are considered for operator placement [21]. In particular, data delivery becomes the main

target as the core SPE requirement, i.e., supplying users with the data, cannot be guaranteed in such

unreliable environments. To tackle this problem, we integrate a dedicated fault tolerance operator

that ensures data reliability. This operator can be placed on a device before or after the processing

operators to preserve the data state. Similar to operator placement, we present a placement problem

for a fault tolerance operator as a choice of an optimal ratio between utilized resources and provided

level of reliability (Section 3.1). We then propose single-objective constraint-based (Section 3.2) and

multi-objective cost-based solutions (Section 3.3) to find the optimal trade-off.

3.1 Problem Statement
The USEC environment encapsulates a tree-shaped topology with processing devices that vary from

small battery-powered sensors over system-on-a-chip devices to high-end rack-scale servers, making

every path unique in terms of resources and reliability [21, 81]. To ensure data delivery in accordance

with system resources, fault tolerance has to be placed selectively on a per-path basis. We present the

FTP problem in three steps: 1) determining the placement path, 2) determining optimal candidates,

and 3) defining the optimal number of devices to run the fault tolerance. The solution to the FTP

problemrequires locating anoptimalmappingof one logical fault tolerance operator tomanyphysical

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

Fault Tolerance Placement in the Internet of Things 138:5

Unreliability

U
til

iz
ed

 R
es

ou
rc

es

max

Impossible

Overutilization

Fig. 2. Resource-reliability trade-off as a Pareto Set.

instances deployed on devices. Finding an optimum is complicated by the need to optimize multiple,

possibly conflicting, objectives𝑑 ∈𝐷 , such asminimizing unreliability, maximizes required resources,

and minimizing the utilized resources maximizes unreliability. Similarly to the placement of process-

ing operators [71], an optimal placement can be described as a function F of x thatmaximizes the score

of an individual placement. Given the 𝑃 ([𝑁]) is a set of all combinations of devices in topology with

N nodes and set of objectives <𝑑1,𝑑2,..𝑑𝑛 >, the score for placement on k devices can be described as:

𝑎𝑟𝑔𝑚𝑎𝑥
𝑥

𝐹 (𝑥), 𝑥 =<𝑑1,𝑑2,..𝑑𝑛 >, 𝑘 ∈𝑃 ([𝑁])
(1)

where

𝐹 (𝑥)=


𝐹1 (𝑥)
...

...

𝐹𝑘 (𝑥)


In Equation 1, the maximization of function F(x) over all device combinations in a topology with

N nodes, shapes the optimal balance required for fault tolerance. Enhancing system reliability to

tolerate network partitions in an USEC systemmeans increasing the number of utilized resources,

i.e., node replicas. This scenario illustrates the conflict identified by the CAP theorem: a USEC system

striving to provide reliability (akin to availability or consistency) in the face of potential network

partitions requires significant resource investment. For instance, a USEC system requires replicas of

every device to support availability or redundant data paths to keep replicas consistent. Considering

that increasing the number of replicas cannot increase system unreliability (device reliability cannot

be negative), and fault tolerance cannot decrease utilized resources as it requires redundancy to

reproduce data in case of failure, these objectives are co-dependent and grow in opposite directions.

Figure 2 visualizes this trade-off as a space of points with unreliability on the x-axis and utilized

resources on the y-axis. This space is the Pareto Set, where some points represent a more optimal

ratio than others, i.e., dominate others.

In a USEC environment, the dominant points are restricted by the number of resources on each de-

vice and themaximumpossible reliability, i.e., accumulative probability of failure of all devices in one

path. Figure 2 shows the set of Pareto Optimal points as a red line that forms the Pareto Front. The set

of points to the right of the line presents an overutilization of resources for the same level of reliability.

At the same time, all the points to the left of the line represent impossible trade-offs due to resource

and reliability constraints. Therefore, the presented fault tolerance placement problem falls into the

class of multi-objective optimization (MOO) problems with multiple, possibly conflicting, objectives.

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

138:6 Anastasiia Kozar, Bonaventura Del Monte, Steffen Zeuch, & Volker Markl

Tackling the presented MOO problem is challenging due to data scarcity, diverse workloads, and

specific user reliability constraints. Conventional supervised learning methods rely on substantial

data volumes. Because of the limited datasets that integrate both reliability and resource utilization,

these approaches are not feasible for solving the FTP problem. The collection of such data is compli-

cated as the USEC environment includes devices that don’t fail for decades. The extensive diversity

and scale of potential workloads across heterogeneous devicesmake full-scale simulation impractical,

while ad-hoc simulation for individual workloads significantly increases end-to-end latency.

3.2 Single-objective Optimization
The Equation 1 is a mathematical representation of the MOO problem [71], where every 𝐹𝑘 (𝑥) en-
capsulates two subfunctions with contradicting objectives. Let the function 𝑓 𝑈

𝑘
(𝑥) represent utilized

resources and 𝑓 𝑅
𝑘
(𝑥) the level of reliability achieved by deploying the fault tolerance operator on

the 𝑘𝑡ℎ combination of devices. Then, every 𝐹𝑘 (𝑥) from Equation 1 can be rewritten as:
𝐹𝑘 (𝑥)= (𝑓 𝑈𝑘 (𝑥),𝑓

𝑅
𝑘
(𝑥))

𝑓 𝑈
𝑘
(𝑥)→𝑚𝑖𝑛

𝑓 𝑅
𝑘
(𝑥)→𝑚𝑎𝑥

(2)

The multi-objective utility function 𝐹𝑘 (𝑥) in Equation 2 can be transformed into a linear objective

function by replacing resource minimization with the no over-exceeding constraint C. The key

objective of the FTP approach, thus, switches to maximizing the reliability level based on available

resources (Equation 3). An alternative solution is saving as many resources as possible, providing

sufficient reliability for a given query.
𝐹𝑘 (𝑥)= (𝑓 𝑈𝑘 (𝑥),𝑓

𝑅
𝑘
(𝑥))

𝑓 𝑈
𝑘
(𝑥) ⩽𝐶

𝑓 𝑅
𝑘
(𝑥)→𝑚𝑎𝑥

(3)

The single objective solution finds one optimal point for a given Pareto Set. However, the resulting

solution finds only a sub-optimal solution as it restricts one of the objectives. It focuses only on one

objective, sacrificing the contradictory one. Thus, we present a more elaborate approach that finds

all possible points of the Pareto Front.

3.3 Multi-objective Optimization
Many approaches have been proposed that do not constraint the objectives providing a set of optimal

ratios: Weighted Sum (WS) [52], Evolutionary Methods (EV) [33], Normalized Constraints (NC) [53],

and Multi-objective Bayesian Optimization (MOBO). In this section, we examine the premises of the

MOO solution and select one of the existingmethods that finds the entire set of ParetoOptimal points.

A key requirement for the desired MOO solution is to incorporate user-defined reliability con-

straints within the reliability objective. Users typically specify reliability levels as processing guaran-

tees, as part of query configurations [41]. Since the utility function in Equation 1 involves continuous

objectives, these discrete reliability specifications should be incorporated by the MOO solution.

Additionally, the diverse IoT use cases necessitate a more fine-granular approach to specify resource

utilization. For example, Healthcare and Autonomous Vehicle Technology demand more processing

resources, while Smart Cities and the Electrical Grid Industry require extensive network resources

for data transmission. Therefore, the discrete objectives should be adapted not just for reliability but

also for different types of resources to reflect their varying importance across different scenarios.

While utilized resources and reliability serve as the primary objectives to prevent underprovi-

sioning, it is essential that the solution can be expanded to encompass typical QoS metrics in USEC

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

Fault Tolerance Placement in the Internet of Things 138:7

`

1 2

3

4

(a) Data Preservation

` `

1 2

3

4

`

(b) Epoch Ingestion

`

1 2

3

4

`

(c) Epoch Propagation

`

1 2

3

4

`

(d) Data Trimming

Tuple from epoch 1

Epoch message

Tuple from epoch 2

Data channel

Event channel

Tuple storage

Sensor devices

`

Edge devices

Cloud devices

Fig. 3. State preservation pattern.

systems, such as energy consumption or processing latency [54]. For instance, USEC systems can

enhance their battery life by avoiding the deployment of resource-intensive tasks, such as filtering

at the sensor level. However, this approach increases the amount of data that needs to be stored on

these devices for fault tolerance, necessitating additional memory resources. Similarly, the fastest

path in terms of latency can be the most unreliable, resulting in the latency-reliability trade-off.

Overall, the desiredMOO solution should incorporate discrete objectives and be efficient and scalable.

However, approaches like NC lacks comprehensive exploration [71], while EV andMOBO can be

computationally demanding in the case of scalability [28, 68, 78]. Moreover, none of these methods

incorporate discrete coefficients, preferring continuous objectives.Havinguser-definedprioritization

of objectives, we obtained the WS approach, allowing us to integrate coefficients as weights and

extend the sum to include additional objectives.

𝐹𝑘 =
∑
𝑤𝑖𝑑

𝑖
𝑘
,

∑∥𝑤𝑖 ∥=1
𝑘 ∈𝑃 ([𝑁]) 𝑖 =1,..𝑛

(4)

Given N devices, the Equation 4 presents the utility function 𝐹𝑘 as a weighted sum of all objectives

𝑑1,..𝑑𝑛 for a given combination 𝑘 ∈ 𝑃 ([𝑁]) in a system with N devices. The objectives used in the

function are normalized costs for a given fault tolerance placement. In the case of contradictory

objectives, we add theminus sign to one of the objectives, transforming it into themaximization prob-

lem. In the next section, we investigate the suitability of existing approaches to follow a generalized

assessment of fault tolerance costs that can be used in Equation 4.

4 FAULT TOLERANCECOST ESTIMATION
In this section, we elaborate on the resource-reliability trade-off by defining cost models to determine

the cost of fault tolerance operators. We achieve this by defining a common procedure of state

preservation that is shared across common fault tolerance approaches developed for SPEs.

Existing fault tolerance approaches require storing data temporarily to ensure data reproducibility

in case of failure. Dealing with infinite data streams and limited memory, these approaches have to

identify no longer needed data and periodically trim it. A trimming frequency is typically defined

using an epoch [18, 22], i.e., time- or count-based interval. In Figure 3, we introduce a common

procedure to preserve and release data, i.e., state. This procedure consists of four phases: 1) data

preservation, 2) epoch ingestion, 3) epoch propagation, and 4) data trimming. Figure 3 provides

an example of a hierarchical topology within the USEC environment, where differently equipped

devices at each level contribute to data processing. A query is deployed on devices 1, 2, 3, and 4 and

replicated on devices 1, 2, and 3 to ensure reliability. Data flow from sensors (nodes 1 and 2) over

an edge device (node 3) directly to the cloud (node 4). In Figure 3a devices 1, 2, and 3 preserve tuples

in their tuple storage before shipping them to the downstream nodes. In the next phase, the epoch

(trimming) message is ingested in the data stream (see Figure 3b). All the tuples that arrive later than

this message belong to the next epoch. Once the trimming message reaches the final sink, device

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

138:8 Anastasiia Kozar, Bonaventura Del Monte, Steffen Zeuch, & Volker Markl

4 provides a safe-to-trim timestamp and propagates it via event channels to the upstream nodes (see

Figure 3c). Finally, in Figure 3d, the epoch message reaches device 3 and launches trimming of all

tuples that were produced before the epoch message.

The Upstream Backup and Passive Standby approach, introduced in Section 2, follow this pat-

tern completely, utilizing disk or memory for storing data and the network for sending trimming

messages. In contrast, Active Standby additionally requires processing resources due to operator

replication. Yet, the storing and trimming pattern stays the same. This section introduces cost models

for memory, network, and processing (Section 4.1). Additionally, we introduce a cost model to assess

path reliability that considers topology heterogeneity (Section 4.2).

4.1 Estimation of Resource Utilization
Common recovery methods require the same resources in different degrees, typically utilizing the

remaining resources not consumed by the processing operators. The cost models presented further

estimate network, memory, and processing resources based on the state preservation procedure

described in Figure 3. Since our goal is not to underprovision the resources of an individual device,

these metrics serve as upper boundaries of required resources, whereas the actual costs can be lower.

They are hardware-oblivious and highly depend on the epoch length, as shown in the Evaluation.

Network. The network cost of a fault tolerance operator originates from trimming messages

that are regularly propagated along the topology (Figure 3d). The frequency of these messages is

defined by the epoch length 𝐸𝐿. As mentioned earlier, the epoch length can be set in time or in the

number of tuples that left the system. The smaller 𝐸𝐿, the more often trimming messages are sent.

Independently of how the 𝐸𝐿 is defined, the frequency of trimming messages depends on the arrival

rate of tuples. If tuples arrive at the final node with a rate of 𝐼 , and messages are generated for every

𝐸𝐿 tuples, then the actual message frequency is
𝐼
𝐸𝐿

. The resulting ratio is multiplied by the tuple size

𝑇𝑠 to get the network bandwidth penalty.

The Equation 5 represents an upper bound estimation for k devices. Currently, we assume a fixed

ingestion rate due to a tuple storage serving as a backpressure mechanism, guaranteeing the upper

bound. However, the equation can be extended by the output selectivity of a given query. Including 1)

the fractionof emitted tuples by total tuples receivedby the operator, and 2) the tuple sizemodification

factor of the operator, i.e., the factor at which an operator changes the size of input tuples.

𝑁𝑘 =𝑇𝑠

𝑘∑︁
𝑖=1

𝐼𝑖

𝐸𝐿
(5)

Memory.Memory cost in fault tolerance systems is determined by the storage needed for oper-

ators to preserve tuples until a trimming message arrives, which then trims tuples from the previous

epoch. Under ideal conditionswith no newbuffer ingestion, storage can hold amaximumof𝐸𝐿 tuples,

where 𝐸𝐿∗𝑇𝑠 represents the total memory used, with𝑇𝑠 being the tuple size. However, the dynamic

nature of USEC environments, as shown in Figure 3d, results in continued tuple ingestion for the

next epoch during trimming message transmission. The additional memory requirement accounts

for the network delay𝐷 and the ingestion rate 𝐼 . Considering the roundtrip network delay𝐷 (𝑖,𝑘)
from device 𝑖 to device 𝑘 , the total stored tuples can be calculated as 𝐸𝐿+2∗𝐷 (𝑖,𝑘) ∗𝐼𝑖 . Equation 6

provides an upper boundary estimation of memory usage for k devices.

𝑀𝐾 =𝑇𝑠

𝑘∑︁
𝑖=1

(𝐸𝐿+2𝐷 (𝑖,𝑘)𝐼𝑖) (6)

Processing. The processing cost in Passive Standby and Upstream Backup is mainly represented

by data trimming in tuple storages. However, in the Active Standby approach, the main processing

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

Fault Tolerance Placement in the Internet of Things 138:9

costs come from replicas of primary operators and are equivalent to the processing costs of primary

operators. As shown in the Evaluation, the processing costs of producing and forwarding a trimming

message can be neglected since they are relatively small compared to other costs.

4.2 K-Safety
To measure system reliability, we redefine the existing property K-Safety [72] to incorporate the

heterogeneity of devices. For the first device (𝑘 =1), the K-Safety (𝑆𝑘) is simply equal to the reliability

of that device, denoted as𝑅𝑘 . For subsequent devices (𝑘 >1), the K-Safety is determined by adding the

reliability of the current device (𝑅𝑘) to the product of two factors: 1) theK-Safety of the previous device

(𝑆𝑘−1),which represents the accumulated fault toleranceup to thatpoint, 2) thenecessityof thebackup

(1 - 𝑅𝑘). Equation 7 iteratively calculates the K-Safety level for each device in a chain, taking into

account its own reliability and the K-Safety of the devices that precede it. This cumulative measure

helps to assess howmany devices within the system can fail while still ensuring data preservation.

𝑆𝑘 =

{
𝑅𝑘 , 𝑘 =1

𝑅𝑘+(1−𝑅𝑘)
∏𝑘
𝑖=2𝑆𝑖−1, 𝑘 >1

(7)

As the reproducibility of data is not ensured, the USEC systems cannot provide two out of four

existing processing guarantees: at-least-once and exactly-once. The remaining ones, none and at-

most-once processing guarantees accept data loss. To match different use cases, we enriched the

at-most-once processing guarantee with further granularity by creating new reliability levels: LOW,

MEDIUM, and HIGH [13, 51]. Each level corresponds to the percentage of devices in one path that

participates in fault tolerance. Specifically, LOW represents participation above 25%,MEDIUM above

50%, and HIGH above 75%. These levels allow us to tailor fault tolerance placement to the diverse

and dynamic nature of USEC environments, ensuring that processing guarantees are aligned with

the reliability requirement of a specific query.

The individual probability of each device can be calculated using the MTBF property. For example,

the MTBF value of the Common Future Modular Seeker sensor devices used in navigation, rocket

propulsion, fin actuators, etc. [7] is 15,000 hours. In contrast to low-end battery-powered sensors,

system-on-a-chip devices like the Raspberry Pi 5.12V DC show a higher MTBF value of 50,000 hours

[9]. This value decreases primarily due to power breakdowns or SD card failures [6]. Meanwhile, the

MTBF estimate for the Intel Server Board S1200V3RP is around 44 years [5]. The probability that the

device is functioning without failures at the time t can be calculated using the bathtub curve from

exponentialmodeling.Using theMTBFvalue, theprobability𝑅𝑘 that device𝑘 is operational at time 𝑡 is:

𝑅𝑘 =𝑒
−𝑡/𝑀𝑇𝐵𝐹 (𝑘))

(8)

The resulting probability 𝑝 in Equation 8 gives us a value in the range [0, 1] with a probability that

𝑘th device participating in the query is running at the time t.

With defined cost models, it appears that deploying fault tolerance closer to the sink appears

profitable because devices with more resources typically offer higher reliability compared to smaller

devices. However, this approach also means not replicating data from devices closer to the sources,

which could lead to potential data loss. Conversely, deploying fault tolerance on small sensor-edge

devices exacerbates resource constraints and poses a risk to data consistency, as these devices suffer

the most from transient failures.

Overall, the definition of the state preservation procedure exposes the possibility of introducing

quantitative estimates to the resource-reliability tradeo-ff. These estimates improve the precision

of available system resources and are used in the following section to solve the FTP problem.

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

138:10 Anastasiia Kozar, Bonaventura Del Monte, Steffen Zeuch, & Volker Markl

Algorithm 1General FTP approach.

1: function FTP(𝑝𝑎𝑡ℎ𝑠)

2: for each 𝑝𝑎𝑡ℎ ∈𝑝𝑎𝑡ℎ𝑠 do
3: 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡← FindPlacement(𝑝𝑎𝑡ℎ)

4: 𝑠𝑐𝑜𝑟𝑒← CalculateScore(𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡)

5: if 𝑠𝑐𝑜𝑟𝑒 >𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑡ℎ.𝑠𝑐𝑜𝑟𝑒 then
6: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑡ℎ.𝑠𝑐𝑜𝑟𝑒←𝑠𝑐𝑜𝑟𝑒

7: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑡ℎ.𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡←𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

8: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑡ℎ.𝑝𝑎𝑡ℎ←𝑝𝑎𝑡ℎ

9: for each 𝑛𝑜𝑑𝑒 ∈𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑡ℎ.𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 do
10: 𝑛𝑜𝑑𝑒.𝑖𝑠𝐹𝑎𝑢𝑙𝑡𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑡 (𝑡𝑟𝑢𝑒)
11: ReduceResources(𝑛𝑜𝑑𝑒)

12: return 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑡ℎ.𝑝𝑎𝑡ℎ

5 FAULT TOLERANCE PLACEMENT
To enable effective fault tolerance in USEC environments, operator placement strategies must

integrate fault tolerance costs to prevent underprovisioning and prioritize reliability due to non guar-

anteed data delivery. Our FTP solutions are designed to prioritize data delivery in query deployment,

dynamically adjusting fault tolerance placement and resource allocation for each query to avoid

underprovisioning and ensure efficient deployment. For each query, our approaches dynamically

adjust fault tolerance placement and prevent resource underprovisioning by propagating the chosen

path and necessary resources to the subsequent query deployment stages.

Generally, FTP approaches can be split into two subproblems: 1) finding a path with the best

placement based on a score, 2) updating path resources based on the final placement. Algorithm 1

presents a general structure of all FTP algorithms and highlights functions that vary in different

algorithms. For every path the FTP approach defines a set of devices with enough resources to run

fault tolerance (Line 3). Based on this set, it calculates a score (Line 4). It compares the score to the

current maximal score of the selected path and remembers the placement in case the score is larger

(Lines 5-8). It updates the system resources by marking the selected nodes as used for fault tolerance,

reducing their available resources. The returning value of Algorithm 1 is dependent on the systems

data forwarding strategy. Systems that implement data partitioning replicate processing operators

over multiple paths [49, 59, 74]. In such systems, FTP approaches can be updated to return r paths
with the best score, where r is a replication factor.

In the rest of the section, we discuss both heuristic-based and advanced cost-based fault tolerance

placements compatible with various operator strategies. We begin with a heuristic-based approach

for the SOOproblem, using heuristic estimates for placement scoring and resource reduction (Section

5.1). This is followed by a cost-based approach, leveraging cost models from Section 4 for the MOO

problem (Section 5.2). Lastly, Section 5.3 introduces runtime adaptations that enhance the cost-based

approach by factoring in the unique attributes of individual queries.

5.1 Naive FTP
To efficiently solve the operator placement problem, various heuristics have been introduced

[29, 42, 60, 61, 63]. However, as the heuristic-based approaches typically exclude fault tolerance from

resource estimation, it can lead to underprovisioning and failures in resource-constrained environ-

ments (Figure 1) [25]. The NFTP approach avoids underprovisioning and ensures data delivery. NFTP

simplifies the FTP problem by transforming it into a SOO problem, maximizing system reliability

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

Fault Tolerance Placement in the Internet of Things 138:11

Algorithm 2 The NFTP approach.

1: function FindPlacement(𝑝𝑎𝑡ℎ)

2: for each 𝑛𝑜𝑑𝑒 ∈𝑝𝑎𝑡ℎ.𝑟𝑒𝑣𝑒𝑟𝑠𝑒 do
3: if 𝑛𝑜𝑑𝑒.ℎ𝑎𝑠𝐸𝑛𝑜𝑢𝑔ℎ𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 () then
4: 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 .𝑎𝑑𝑑 (𝑛𝑜𝑑𝑒)
5: return 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

6: function CalculateScore(𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡)

7: for each 𝑛𝑜𝑑𝑒 ∈𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 do
8: 𝑠𝑐𝑜𝑟𝑒←𝑠𝑐𝑜𝑟𝑒+𝑛𝑜𝑑𝑒.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ()
9: return 𝑠𝑐𝑜𝑟𝑒

10: function ReduceResources(𝑛𝑜𝑑𝑒)

11: 𝑛𝑜𝑑𝑒.𝑠𝑙𝑜𝑡𝑠←𝑛𝑜𝑑𝑒.𝑠𝑙𝑜𝑡𝑠−1

while treating the resource capacity of a given path as a limiting constraint. After finding an optimal

placement, it propagates fault tolerance costs to the operator placement strategy.

Existing operator placement strategies estimate utilized resources using different abstractions,

e.g., slots [23]. In the slotted cost model, each infrastructure node has a fixed number of computing

slots that can be used for assigning operators, and each operator has a dedicated requirement in

terms of slots. In NFTP, each fault tolerance operator is estimated to consume one resource unit,

which is equivalent to the simple processing operator cost.

The placement of fault tolerance in the NFTP is performed based on simple heuristics stating the

importance of placing fault tolerance as soon as data enters the system to ensure upstream backup

(similar to Kafka). In Algorithm 2, NFTP iterates through the nodes in reverse order, starting from the

leaf node and moving towards the root (Line 2). The reverse order is motivated by the requirement

to satisfy user-defined reliability constraint, which is referred to the number of devices participating

in fault tolerance. In case of the lower reliability levels, NFTP still ensures that data is preserved as

early as possible. At first, the NFTP approach adds every node that has enough resources to the final

placement (Lines 3-5). Then it assigns a score to each node in the placement based on the device’s

proximity to the leaf node. This score is calculated as the number of hopes between the current and

the root node (Lines 6-9). After the function returns the placement score and the selected placement,

NFTP reduces the required slots from the path capacity (Lines 10-11).

The naive algorithm effectively addresses the challenge of underprovisioning while striving to

optimize system reliability. However, it tends to underutilize system resources due to imprecise

resource estimation. Thus, in scenarios where the fault tolerance mechanism is lightweight and

demands fewer resources than a processing operator, NFTPmay underutilize resources, leading to

a reduced number of deployed queries.

5.2 Multi-objective FTP
Existing cost-based operator strategies involve mathematical modeling and optimization techniques

that take into account a wide range of factors, including current resource availability, workload

characteristics, andQoS requirements [3, 17, 56, 62]. However, as heuristic-based strategies, they also

ignore fault tolerance costs [25], resulting in underprovisioning and failures. To improve fault tol-

erance estimation and provide compatible costs for the cost-based operator placement, we introduce

the MFTP approach.

OurMFTP approach utilizes cost models for network𝑁𝑘 , memory𝑀𝑘 , processing 𝑃𝑘 , and K-Safety

𝑆𝑘 introduced in Section 4. These cost models provide upper bound estimates of resources required

for fault tolerance. Figure 5 visualizes thememory estimates (Equation 6) compared to the real values.

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

138:12 Anastasiia Kozar, Bonaventura Del Monte, Steffen Zeuch, & Volker Markl

(b) Naive Placement (a) Resource Allocation

Node 1
Slots: 1
Memory: 14
Resilience: 1

Node 2
Slots: 3
Memory: 30
Resilience: 3

Node 3
Slots: 1
Memory: 18
Resilience: 6

Node 4
Slots: 7
Memory: 80
Resilience: 17

Node 5
Slots: 7
Memory: 80
Resilience: 18

(c) MFTP Placement

Chosen path
Data stream
Fault tolerance

Fig. 4. Example placement using NFTP andMFTP approaches.

Based on these estimates, the MFTP then constructs a cost space for a set of all possible placements

and chooses the one with the maximal score. It employs a cost-based utility function that extends

Equation 4 to evaluate any fault tolerance placement based on the combination of K-Safety and

resource utilization.

In Equation 9, K-Safety is a probabilistic metric and does not require normalization. The resource

additives are normalized by including minimum and maximum values of resources per path. The

min value equals 0, representing the case when deployment requires all available resources of a

given objective. The max value depicts the current path capacity, representing the case when fault

tolerance was not deployed on any device.

𝐹𝑘 =𝑤𝑠𝑆𝑘+𝑤𝑛 𝑁𝑘
𝑚𝑎𝑥−𝑁𝑘

𝑁𝑘
𝑚𝑎𝑥−𝑁𝑘

𝑚𝑖𝑛

+𝑤𝑚 𝑀𝑘
𝑚𝑎𝑥−𝑀𝑘

𝑀𝑘
𝑚𝑎𝑥−𝑀𝑘

𝑚𝑖𝑛

+𝑤𝑝 𝑃𝑘𝑚𝑎𝑥−𝑃𝑘
𝑃𝑘𝑚𝑎𝑥−𝑃𝑘𝑚𝑖𝑛

(9)

The complexity of the resulting utility function is exponential and equals to the number of

combinations of n-1 devices on one path. To reduce the resolution time, our MFTP approach utilizes

a fault tolerance heuristic similar to NFTP. It begins by identifying the nearest device to the source

with sufficient resources for fault tolerance (Lines 2-6). For every device, MFTP calculates required

resources based on the equations presented in Section 4.1 with k equivalent to the current device only.

Then, it traverses the rest of the path in the opposite direction, iteratively going from the largest device

to the smallest (Lines 7-10). This heuristic is based on the observation that larger devices nearer to the

root typically have more resources [81]. It saves resolution time without sacrificing Pareto Optimal

points. For the resulting placement, the MFTP approach calculates scores using the cost models from

Section 4 (Lines 12-22), with reliability being recursive and dependent on all chosen devices. Finally,

the MFTP approach reduces the required memory, network, and processing resources from each

node that was chosen for placement using individual cost estimates from Section 4.1 (Lines 24-26).

Figure 4 presents the difference between placements of NFTP andMFTP in a simplified example

with only memory resources. Given the topology presented in Figure 4a, both algorithms find two

paths available: nodes 1-2-4 and 1-3-5. The pathwith nodes 1-3-5 has a higher level of resilience and is

therefore considered optimal. The NFTP approach requires a minimum of two slots from every node:

one for fault toleranceandone forprocessing.While iteratingover thepath1-3-5,Nodes1and3arenot

added to thesetof candidates forplacement. Similarly,on thepath1-2-4 theNode1 isnotconsidered for

placement.Theoverall scoreofnodes2, 4on thepath1-2-4 is 3,while the scoreof thenode5on thepath

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

Fault Tolerance Placement in the Internet of Things 138:13

Algorithm 3 TheMFTP approach.

1: function FindPlacement(𝑝𝑎𝑡ℎ)

2: for each 𝑛𝑜𝑑𝑒 ∈𝑝𝑎𝑡ℎ.𝑟𝑒𝑣𝑒𝑟𝑠𝑒 do ⊲ find initial placement

3: 𝑝𝑎𝑡ℎ.𝑝𝑜𝑝 ()
4: if 𝑛𝑜𝑑𝑒.ℎ𝑎𝑠𝐸𝑛𝑜𝑢𝑔ℎ𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 () then
5: 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 .𝑎𝑑𝑑 (𝑛𝑜𝑑𝑒)
6: break
7: for each 𝑛𝑜𝑑𝑒 ∈𝑝𝑎𝑡ℎ do ⊲ proceed with the normal order

8: if 𝑛𝑜𝑑𝑒.ℎ𝑎𝑠𝐸𝑛𝑜𝑢𝑔ℎ𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 () then
9: 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 .𝑎𝑑𝑑 (𝑛𝑜𝑑𝑒)
10: return 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

11: function CalculateScore(𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡)

12: for each 𝑛𝑜𝑑𝑒 ∈𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 do
13: 𝑚𝑒𝑚𝑜𝑟𝑦←𝑚𝑒𝑚𝑜𝑟𝑦+𝑛𝑜𝑑𝑒.𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑀𝑒𝑚𝑜𝑟𝑦 ()
14: 𝑛𝑒𝑡𝑤𝑜𝑟𝑘←𝑛𝑒𝑡𝑤𝑜𝑟𝑘+𝑛𝑜𝑑𝑒.𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑁𝑒𝑡𝑤𝑜𝑟𝑘 ()
15: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔←𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔+𝑛𝑜𝑑𝑒.𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔()
16: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦←𝑛𝑜𝑑𝑒.𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ()
17: if 𝑛𝑜𝑑𝑒.𝑖𝑠𝑆𝑜𝑢𝑟𝑐𝑒𝑁𝑜𝑑𝑒 () then
18: 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦←𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

19: else
20: 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑡𝑦←𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦+
21: (1−𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)∗𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
22: return 𝑤1 * 𝑚𝑒𝑚𝑜𝑟𝑦.𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 () + 𝑤2 * 𝑛𝑒𝑡𝑤𝑜𝑟𝑘.𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 () + 𝑤3 *

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔.𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 () +𝑤4 * 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

23: function ReduceResources(𝑛𝑜𝑑𝑒)

24: 𝑛𝑜𝑑𝑒.𝑚𝑒𝑚𝑜𝑟𝑦←𝑛𝑜𝑑𝑒.𝑟𝑒𝑑𝑢𝑐𝑒𝑀𝑒𝑚𝑜𝑟𝑦 ()
25: 𝑛𝑜𝑑𝑒.𝑛𝑒𝑡𝑤𝑜𝑟𝑘←𝑛𝑜𝑑𝑒.𝑟𝑒𝑑𝑢𝑐𝑒𝑁𝑒𝑡𝑤𝑜𝑟𝑘 ()
26: 𝑛𝑜𝑑𝑒.𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔←𝑛𝑜𝑑𝑒.𝑟𝑒𝑑𝑢𝑐𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔()

1-3-5 is only 1. Thus,NFTPchooses a suboptimal path 1-2-4 for placementwithnodes 2, 4 participating

in fault tolerance, as illustrated in Figure 4b. At the same time, the estimation of individual resources

allows MFTP to avoid using imprecise slot approximations. Assuming network delay being 0.01s

between every two nodes, a tuple size of 0.1Mb, an ingestion rate of 100 tuples/s, and an epoch length

of 100 tuples, the required memory for fault tolerance to be placed on Node 3 is𝑀3=0.1∗100+2∗2∗
0.01∗100=14𝑀𝑏. However, the required memory for Node 1 is𝑀1=0.1∗100+2∗3∗0.01∗100=16𝑀𝑏,

meaning that Node 1 is not added byMFTP to the set of placement candidates for both paths. After

finalizing the set of candidates, the MFTP approach calculates a score for all possible combinations

of devices. For instance, having the system running for one hour and individual reliabilities 𝑅5 =

𝑒−1/18 = 0.95 and 𝑅3 = 𝑒
−1/6 = 0.85, the k-safety of devices 3, 5 is 𝑆35 = 0.95+ (1−0.95) ∗0.85 = 0.99.

Thus, omitting weights for simplicity, the 𝐹35=
98−(16+15)

98−0 +0.99=1.68. Following similar calculations,

MFTP computes a score for the placement 2, 4 with the score 1.61. Finally, it chooses the path 1-3-5

with the highest score and nodes 3, 5 for running fault tolerance (see Figure 4c).

5.3 Runtime Adaptation
The dynamic environment of USEC necessitates continuous adaptation in placement decisions. Static

provisioning does not fit continuous, long-running streaming applications, as it almost inevitably

leads to an over- or under-provisioned system [43]. Variable workloads and fault tolerance require

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

138:14 Anastasiia Kozar, Bonaventura Del Monte, Steffen Zeuch, & Volker Markl

0 200 400 600 800 1000
Buffers Processed (100)

0

200

400

600

800

1000

U

se
d

B
uf

fe
rs

max
theoretical estimated

Fig. 5. Estimated vs. actual storage size.

0 10 20 30 40 50 60
Time (s)

0.0

0.2

0.4

0.6

0.8

M
em

or
y

C
on

su
m

pt
io

n
(%

)

100 500 900

Fig. 6. Memory consumption of different epochs.

different types of resources to different degrees. Constantly optimizing for one type can bring the

system to imbalance, resulting in bottlenecks and underprovisioning. Further, we introduce anMFTP-

H algorithm that 1) adjusts global fault tolerance parameters to align with current system resources

(see Section 5.1) and 2) employs individual query heuristics to iteratively calibrate the weights of the

MOOutility function, thus determining the significance of oneobjective over another (see Section 5.2).

5.3.1 Hyperparameter Tuning. As presented in Figure 3, every fault tolerance approach follows

the same procedure in terms of resource redundancy. This redundancy cannot be avoided but can

be adjusted. Figure 6 shows the memory consumption on one device based on different trimming

frequencies. The epoch length is usually a system hyperparameter that is set for the entire system [18,

23, 45].However, as shown inFigure 6, the appropriate selectionof this parameter can aid in deploying

fault tolerance on devices with limited resources. For example, setting the epoch to 100 can reduce

memory consumptionof a fault tolerance approach. Therefore, the correct choice of ahyperparameter

helps to distribute resources according to individual system properties. By minimizing the epoch

length, we can save memory utilization, or by maximizing it, we can reduce network utilization. As a

modification ofMFTP,we presentMFTP-H,which 1) defines the epoch value on a per-query basis and

2) adapts the epoch length according to the system resource allocation on the arrival of a new query.

Our MFTP-H algorithm alters the epoch parameter iteratively on every newly arrived query. For a

given path, it finds the smallest device and its memory and network capacities. Based on these values

and the initial resources on the device, it finds the optimal ratio that adjusts the initial epoch value.

The value of an epoch cannot become smaller than one. It is important to mention that even if the

epoch value equals one, more than one tuple is stored in practice. In Figure 3b-d, we see that we store

tuples from the previous epoch along with tuples from the next epoch. This happens because our

approach is non-blocking, and while the tuple reaches the final sink and trimming message arrives

at the node, more data is processed and stored. Once the new epoch is chosen, we iterate over all

nodes on the path and propagate the new value of the epoch.

5.3.2 Weights Adaptivity. The utility function presented in Equation 9 is a weighted sum that can be

split into two types of objectiveswith uniqueweights: reliability and utilized resources. The reliability

weightmirrors auser requirement in termsofdata importance. For example, if data is unimportant and

can be partially lost, then the system does not need to allocate many resources for the fault tolerance

of the submitted query. In our approach, we allow users to choose from four classes of reliability:

NONE, LOW,MEDIUM, andHIGH. In particular, no fault tolerance for NONE, and at least 25, 50, and

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

Fault Tolerance Placement in the Internet of Things 138:15

0 2000 4000 6000 8000 10000
Time (s)

0M

1M

2M

3M

4M

5M

6M

7M

Th
ro

ug
hp

ut
 (T

up
le

s/
S

ec
) 156 queries

121 queries 128 queries

166 queries
183 queries

172 queries

NO FT NES
NES-FULL

NES-REPLICATED
NFTP NES

MFTP NES
MFTP-H NES

Fig. 7. Multi-Query Scalability.

75% of devices participating in fault tolerance for LOW, MEDIUM, and HIGH.We incorporate these

values into the reliabilityweight and add an additional constraint to ensure user-specified guarantees.

Regarding resource weights, we split adaptation into two steps: initial calibration and runtime

adjustment. The initial calibration requires the system administrator to analyze the system resource

scarcity. Then, the runtime adaptation depends on the query workload. In our solution, we adapt

weights based on simple heuristics: stateful queries are memory-heavy, queries with high selectivity

are CPU-heavy and queries with low selectivity are network-heavy. In future work, we see the

potential of developing a reinforcement learning model for this analysis and rewarding it with

runtime monitoring values.

In summary, our FTP solutions address the unique challenges of fault tolerance placement in

USEC environments by prioritizing reliability and efficient resource utilization. These approaches

dynamically adapt fault tolerance placement for each query, preventing underprovisioning while

ensuring data delivery.

6 EVALUATION
In this section, we experimentally evaluate our FTP solutions in NES [47, 81]. In Section 6.1, we

introduce our experimental setup. After that, we present four sets of experiments. First, we eval-

uate the resource efficiency of our approaches in NES and compare it to the other approaches in

state-of-the-art SPEs (Sec. 6.2). Second, we analyze the impact of fault tolerance with different hyper-

parameters on the system’s throughput and latency (Sec. 6.3). Third, we explore the decision time of

FTPs on large-scale topologies (Sec. 6.4). Finally, we analyze the recovery latency based on different

placements and epoch length (Sec. 6.5).

6.1 Experimental Setup
We run our experiments on four types of hardware. Type A: a Linux server with an AMD EPYC

7742 2.25GHz CPU (64 physical cores) and 1TB of main memory. Type B: a hierarchical cluster of
eight Linux servers with 2 Intel Xeon Silver 4216 2.20 GHz CPU (32 physical cores), 500 GB of main

memory, and 100 Gbit Infiniband connection. Type C: 256 Rasberry Pis united into a Kubernetes
cluster. Each node is equipped with two virtual CPUs (vCPUs) at 1.2 GHz, 2 GB RAM, and 10 GB disk

space. Type D: Raspberry Pi 4 Model B with 1.5 MHz Quad-Core, 2GB RAM, MTBF 50k hours.

To run the experiments, we utilized NES v0.5 and Apache Flink 1.17.1, running on a Kubernetes

v1.25 cluster created in Google Cloudwith system docker images. In NES, each source node generates

data at 900 buffers/sec, with each buffer containing 2048 tuples. Both Flink and NES’s fault tolerance

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

138:16 Anastasiia Kozar, Bonaventura Del Monte, Steffen Zeuch, & Volker Markl

0 1000 2000 3000 4000 5000 6000
0

50

100

Av
g.

 C
P

U
(%

)

NO FT
FT
NFTP
MFTP
MFTP-H

0 1000 2000 3000 4000 5000 6000
0.0

0.5

1.0

1.5

N
et

w
or

k
(M

B
ps

) NO FT
FT
NFTP
MFTP
MFTP-H

0 1000 2000 3000 4000 5000 6000
0

1

2

3

M
em

or
y

(G
B

) NO FT
FT
NFTP
MFTP
MFTP-H

0 50 100 150 200
Time (s)

0

50

100

Av
g.

 C
P

U
(%

) NO FT
FT

0 50 100 150 200
Time (s)

0.0

0.2

0.4

N
et

w
or

k
(M

B
ps

)

a) CPU Usage NES b) Network Usage NES c) Memory Usage NES

d) CPU Usage Flink e) Network Usage Flink f) Memory Usage Flink

NO FT
FT

0 50 100 150 200
Time (s)

0

1

2

3

4

M
em

or
y

(G
B

) NO FT
FT

Fig. 8. CPU, network, and memory utilization during stateful queries submission in NES and Flink.

settings include a 100ms trimming frequency (NES measures epoch length in buffers) and a tuple

size of 131Kb.rs. The reliability weight of cost-based FTP is LOW (0.25).). The weights of utilized

resources are adjusted automatically based on the workload, e.g., 0.5 memory, 0.125 network, and

0.125 processing for memory-heavy workloads (see Section 5.3.2).

6.1.1 Workloads. We selected three distinct workloads from the NEXMark benchmark suite [75]:

𝑁𝑥𝑄0,𝑁𝑥𝑄2, and𝑁𝑥𝑄8, to perform an analysis of system resources. This benchmark suite serves as

a simulation of a real-time auction platform, encompassing key functionalities such as auctions, bids,

and new user events. The suite accommodates both stateless operations (e.g., projection or filtering)

and stateful operations (e.g., stream joins or window aggregations). The rationale behind choosing

these three workloads is their representation of diverse resource-demanding scenarios, including

network-, memory-, and processing-intensive workloads, and their widespread use in the research

community. In detail, these queries perform the following workload:

𝑁𝑥𝑄0: Pass Through. 𝑁𝑥𝑄0 in the NEXMark benchmark is a network-intensive workload com-

prising solely of source and sink operators. It tests the system’s capability to handle high data

throughput without processing delays.

𝑁𝑥𝑄2: Selection. 𝑁𝑥𝑄2 finds bids with specific auction IDs and shows their bid price. This query

is CPU-intensive with high ingestion rates and a stateless selectivity operator.

𝑁𝑥𝑄8: Monitor NewUsers.𝑁𝑥𝑄8 selects people who entered the system and created auctions in

the last period using a statefulwindowoperator. This query represents amemory-heavy computation

for small IoT devices.

6.2 SystemComparison
In this section, we study the system throughput and resource utilization under the impact of fault

tolerance on hardware with limited resources. To this end, we study multi-query scalability in

NES (Sec. 6.2.1), resource utilization (Sec. 6.2.2), and throughput of fault tolerance in NES against

state-of-the-art approaches (Sec. 6.2.2).

6.2.1 Multi-query scalability. In the first experiment, we evaluate the multi-query scalability of

existing fault tolerance placements in an environment with constrained resources. We subsequently

deploy stateful query 𝑁𝑥𝑄8 multiple times on four machines of Type D. All devices run NES, where

one machine serves as a Coordinator and the other serve as NES Workers. Each NES Worker is

equipped with a source forming a two-layered topology with three available paths. The experiment

shows the number of queries deployed and throughput of NES without fault tolerance , with NFTP

, with MFTP , and with MFTP-H , compared to NES-FULL and NES-REPLICATED (r=2) .

NES-FULL implements fault tolerance on all devices by default, similar to systems with upstream

backup or passive standby approaches like Flink [23] or Heron [45]. Conversely, NES-REPLICATED

applies fault tolerance on every device across ’r’ (replication level) paths, similar to systems that

implement active standby, such as Frontier [59], TelegraphCQ [27], or Borealis [20].

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

Fault Tolerance Placement in the Internet of Things 138:17

16 32 64 128 256
Number of devices

0.0M

2.0M

4.0M

6.0M

8.0M

10.0M

Th
ro

ug
hp

ut
 (T

up
le

s/
S

ec
)

NONE
NES-FTP

NES-REPLICATED
NES-FULL

(a) Wide topology

4 6 8 10
Topology depth (Number of devices)

0.0M

0.5M

1.0M

1.5M

Th
ro

ug
hp

ut
 (T

up
le

s/
S

ec
)

NONE
MFTP-H-LOW

NES-FULL

(b) Deep topology

Fig. 9. Scalability in wide and deep topologies.

Results.Figure 7presents thatNESwithout fault tolerance supports 65%morequeries andachieves

29% higher throughput than NES-FULL. Similarly, NES-REPLICATED reduces the number of de-

ployed queries by 31% and the overall throughput by 18%. Both NES-FULL and NES-REPLICATED

placement strategies result in a failure. Employing NFTP allows NES to successfully deploy 156

queries with 5.5M aggregated throughput without failure. Compared to NFTP, the MFTP approach

increases the number of deployed queries to 166 and the throughput to 5.7M, which is an increase

of 4%. The MFTP-H approach increases the overall number of deployed queries to 172 and the

throughput to 5.8M, which is only 2% higher thanMFTP.

Independently of the fault tolerance strategy, NES faces underprovisioning and failure. NES-

REPLICATED and NES-FULL fail after deploying 127 and 120 queries respectively, due to ignorance

of resources utilized by fault tolerance. NFTP deploys fewer queries than MFTP and MFTP-H be-

cause of less accurate resource estimation. MFTP’s cost-based estimation successfully deploys 166

queries, while MFTP-H’s runtime adaptation and parameter tuning further increase this to 172

queries. However, it does not significantly improve the throughput (only 2%), as frequent trimming to

reduce memory results in a larger processing queue. Ultimately, NFTP, MFTP, and MFTP-H prevent

underprovisioning and failure by incorporating fault tolerance costs into the operator placement

strategy, with MFTP-H enhancing fault-tolerance query deployment by 30% and throughput by 18%

compared to NES-FULL, and by 26% and 13% compared to NES-REPLICATED.

6.2.2 Resource Utilization. Figure 8 provides insights into the system resource utilization of a

Worker during the query deployment on twomachines of Type Dwith 2 GBmemory to reveal the

different behavior of our approaches. Both devices run NES or Flink, where one machine serves as a

Coordinator (Master) and the second as aWorker. To this end, we subsequently deploy stateful query

𝑁𝑥𝑄8 multiple times and analyze the CPU, network, and memory utilization of NES with and

without fault tolerance, with NFTP , withMFTP , andwithMFTP-H , compared to Flinkwith

and without fault tolerance. As NES-FULL and NES-REPLICATED do not perform resource

analysis and affect the resources of an individual worker in precisely the same manner, we mention

thembothaswith fault tolerance (FT).The successful querydeployment ismarkedas★and failure as✗.
CPUUtilization.NES deploys 64 queries without fault tolerance, but fails at 42 queries with fault

tolerance, runs 32 queries with NFTP, 41 queries with MFTP and 47 with MFTP-H. Flink successfully

deploys 14 queries without fault tolerance while failing at the 11th query in case of fault tolerance.

NES runs longer since it deploys more queries by optimally using resource-constrained hardware. To

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

138:18 Anastasiia Kozar, Bonaventura Del Monte, Steffen Zeuch, & Volker Markl

4 6 8 10
Topology depth (Number of devices)

0.0M

0.2M

0.5M

0.8M

1.0M

1.2M

1.5M

1.8M

Th
ro

ug
hp

ut
 (T

up
le

s/
S

ec
)

NONE 100 500 900

(a) Throughput

4 6 8 10
Topology depth (Number of devices)

0

1000

2000

3000

4000

5000

La
te

nc
y

(m
s)

NONE 100 500 900

(b) Latency

Fig. 10. Varying epoch lengths.

this end, it dynamically schedules processing operators on hardware resources, balancing workload

performance requirements and operator compute demands. Figure 8a shows that NES effectively

utilizes resources, supporting CPU utilization with and without fault tolerance on an average of 98%.

Flink, on average, loads CPU only to 47% with fault tolerance and 40% without (Figure 8d). Although

we expected an increased CPU usage in NES due to a higher number of trimming tasks, this effect is

mitigated by the low trimming frequency (see Sec. 6.3.1) and the efficient implementation of trimming

operations. As a result, our lightweight implementation only induces a negligible overhead.

Network Utilization. Flink requires, on average, 25% more network bandwidth with fault toler-

ance compared to running without fault tolerance, whereas NES requires only 5% more. On average,

the network utilization of fault tolerance is higher than without due to trimming messages sent

at the end of every epoch. This overhead can be controlled by correctly adjusting fault tolerance

parameters. In Figure 8b of NES, we see that MFTP-H utilizes 1%more network capacity than the rest

of the approaches. It happens because it reduces epoch length, making the fault tolerance approach

trimming more often to save memory.

Memory Utilization.Memory usage with fault tolerance is 6% higher on average for NES and

16% for Flink compared to systems running without fault tolerance. Figure 8c reveals that the failure

that appeared while deploying stateful queries with fault tolerance came from the device running

out of memory.

Fault tolerance requires additionalmemory resources to store redundant data, ensuring recovery in

the event of failure. For instance, in the case of NES,with an epoch length of 128 buffers and a network

delay of 0.1s, the expected storage size is estimated at 156 buffers (see Equation 6). Given a buffer

size of 131 KB, this translates to an overall additional memory requirement of approximately 20 MB

per window. This difference is shown in Figure 8c, where NES requires additional memory with fault

tolerance. Additionally, Figure 8c reveals that NFTP stops the query deployment before underpro-

visioning memory. However, it does it quite far from the memory limit, due to imprecise estimation.

MFTP also avoids underprovisioning, stopping the deployment process closer to the memory limit

than NFTP. That highlights better resource estimation of MFTP. MFTP-H reaches the memory limit

later, requiring 4% less memory thanwhen running the fault tolerance approachwithout adaptation.

6.2.3 Scalability. Figures 9(a) and 9(b) demonstrate the scalability of NES-FULL, NES-REPLICATED

and NES-FTP. First, we compare the throughput of NES-FULL, NES-REPLICATED (r=10% of de-

vices), FTP approaches, and no fault tolerance in NES on a wide, two-layered flat topology in Figure

9(a). Note that, we merge NFTP, MFTP and MFTP-H to NES-FTP, as applying them to such kind

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

Fault Tolerance Placement in the Internet of Things 138:19

4 6 8 10
Topology depth (Number of devices)

0.0M

0.2M

0.4M

0.6M

0.8M

1.0M

1.2M

1.4M

Th
ro

ug
hp

ut
 (T

up
le

s/
S

ec
)

NONE LOW MEDIUM HIGH

(a) Throughput

4 6 8 10
Topology depth (Number of devices)

0

500

1000

1500

2000

2500

La
te

nc
y

(m
s)

NONE LOW MEDIUM HIGH

(b) Latency

Fig. 11. Varying reliability.

of topology results in the same placement. Second, in Figure 9(b), we compare the throughput of

no fault tolerance against MFTP-H with LOW reliability and NES-FULL (as both NES-FULL and

NES-REPLICATED place fault tolerance on every device on one path, we show only NES-FULL) on

a deep sequential topology (using one path). We run the experiments on Type D hardware with the

Coordinator running on a Linux server with 30 vCPU at 1.2 GHz, 30GB RAM, and 10Gb external

storage. We run the 𝑁𝑥𝑄0 workload and study the throughput of an increasing number of devices.

Results. For both topologies, NES-FTP outperforms existing state-of-the-art approaches. In Figure

9(a), FTP induces only aminor overhead and thus reduces the throughput at most by 5%, regardless of

the number of devices. In contrast, the throughput difference between NES with NES-REPLICATED

and without fault tolerance increases from 10% for 128 devices to 13% for 256 devices. NES-FULL

shows a greater reduction in throughput, 18% for 128 devices and 29% for 256 devices. In Figure 9(b),

we observe that MFTP-H stays relatively close to NES-FULL for a depth of 4, 6, and 8. Both MFTP-H

and NES-FULL reduce system throughput by 24% in comparison to no fault tolerance at a height of 8.

Additionally, with a topology depth of 10, NES-FULL reduces throughput from 1.8M to 80k tuples/sec,

while MFTP-H reduces it to 262k tuples/sec, resulting in more than 3 times higher throughput. In

summary, NES-FTPmaintains consistent throughput in wide topologies without scalability issues,

while NES-REPLICATED and NES-FULL struggle with scalability as device numbers increase. In

deep topologies, fault tolerance reduces throughput beyond a depth of 8 due to increased trimming

message delays, but MFTP-Hminimizes this overhead more effectively than NES-FULL by dynami-

cally adjusting epoch size and trimming frequency. Overall, NES-FTP demonstrates better scalability

in both wide and deep topologies as the system scales, primarily due to deploying fewer replicas and

thus reducing systemworkload compared to other approaches.

6.2.4 Throughput Comparison. In this experiment, we evaluate the throughput of Flink [23], Heron

[45], Frontier (r=2) [59], and NES with LOW (NES-L), MEDIUM (NES-M), and HIGH (NES-H) relia-

bility on 128 devices of Type C using𝑁𝑥𝑄2 workload. To this end, we create a three-layered topology

with one source node. We compare NES running NFTP approach for placement, which employs the

Upstream Backup fault tolerance approach, with Flink and Heron, both utilizing Passive Standby for

fault tolerance. Additionally, we evaluate our approach against Frontier, a fault tolerance solution

designed for Edge environments that uses Active Standby.

Results.NES achieves a throughput of around 1.8M tuples per second, while other state-of-the-art

systems sustain up to 68 times lower throughput. In particular, Frontier achieves 26k, Flink up

to 30k, Heron up to 34k tuples/second. Providing the lowest reliability level, NES-L achieves the

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

138:20 Anastasiia Kozar, Bonaventura Del Monte, Steffen Zeuch, & Volker Markl

Q0 Q2 Q8
0.0M

0.2M

0.5M

0.8M

1.0M

1.2M

1.5M

1.8M

Th
ro

ug
hp

ut
 (T

up
le

s/
S

ec
)

100 500 900

(a) Throughput

Q0 Q2 Q8

0

1000

2000

3000

4000

La
te

nc
y

(m
s)

100 500 900

(b) Latency

Fig. 12. Varying queries.

highest throughput of 1,78M tuples/sec. NES-M slightly reduces throughput by 0.8%, and the highest

reliability level, NES-H, reduces throughput by only 1% from NES-L, sustaining 1,76M tuples/sec.

Parts of the speedup of NES can be devoted to its highly efficient processing engine that provides a

holistic streamoperatormodel,which splits logical operators into executablepipelinesof reusable sub-

operators. To utilizemodern hardwaremost efficiently, the processing engine ofNES customizes code

generation and compilation to generate efficient code based on customizable sub-operators [30, 34, 35,

58, 65, 83]. In addition, by leveraging our non-blocking lightweight fault tolerance implementation,

NES attains an exceptional throughput despite constrained resources. In contrast, Java-based Flink,

Heron, and Frontier, running onRaspberry Pis, suffer from resource limitations due to the Java virtual

machine (JVM) overhead, significantly constraining the available resources of edge devices.

6.3 Impact of Fault Tolerance
In the following set of experiments, we study the impact of fault tolerance and its parameters on

the throughput and latency. To this end, we study the impact of a variable epoch length (Sec. 6.3.1),

varying reliability (Sec. 6.3.2), and various queries (Sec. 6.3.3).

6.3.1 Variable epoch. In this experiment, we evaluate the scalability of our fault tolerance approach

in NES. The coordinator runs on the hardware of Type A and workers on Type B, forming a chained

topology. The memory capacity of all workers is restricted to store at most 1024 buffers to simulate

a memory-constrained environment, where the buffer size is 131KB. To analyze system behavior

with variable epoch lengths, we pick 100, 500, and 900 buffers to represent low, medium, and high

memory loads. We compare the throughput and latency of these three epoch lengths against no fault

tolerance while increasing the number of nodes in the topology.

Results. Figure 10(a) reveals that the throughput remains the same across all epoch lengths for

topology depths of 4 and 6 across various fault tolerance epoch lengths. Similar Figure 10(b) shows

no difference in latency between no fault tolerance and fault tolerance with three different epoch

lengths. For a topology depth of 8, epoch length 100 reduces system throughput by 75% compared to

no fault tolerance. Latency increases as well by x18 on average from 60 to 1100ms. An epoch length

of 500 reduces the system’s throughput by 44% and latency by 4x. For a topology depth of 10, all

three epochs caused a major reduction in system throughput by around 94% and a latency increase

from 1s to 2.5s, which is more than two times higher.

To select the optimal epoch parameter, we propose to use Equation 6 for the closest to the source

device. This device experiences thehighest loadon fault tolerance storagedue to thedelay in trimming

messages. Its memory estimate serves as an upper bound for the required memory dedicated to fault

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

Fault Tolerance Placement in the Internet of Things 138:21

100

500

900

1300

1700

2100

Ti
m

eo
ut

LTE
GSM
UMTS

ILP

Bott
om

 U
p

ILP
 +

NFTP

ILP
 +

MFTP

ILP
 +

MFTP-H

Bott
om

-U
p +

 N
FTP

Bott
om

-U
p +

 M
FTP

Bott
om

-U
p +

 M
FTP-H

0
2
4
6
8

10
12

D
ec

is
io

n
Ti

m
e

(S
ec

)

Fig. 13. Decision time for the Berlin cell tower dataset.

tolerance. In this experiment,with the system’s ingestion rateof 700buffers/secondand the round-trip

delayof approximately 0.1 secondsbetweendevices, the estimatedmemory for a topologydepthof 8 is

980 buffers. Deviating significantly from this value floods the systemwith trimmingmessages, poten-

tially leading to processing bottlenecks, as epoch length 100 demonstrates in Figure 10(b). Similarly,

for a topological depth of 10, the estimatedmemory requirement for the furthest device is around 1260

buffers. Therefore, all considered epoch lengths are sub-optimal for this depth. From this experiment,

we conclude that the epoch length has a major impact on the system’s performance, as sub-optimal

epoch lengths can flood the systemwith trimming messages, resulting in decreased performance.

6.3.2 Varying reliability. In this experiment, we investigate how different levels of reliability influ-

ence system performance. Similar to the previous experiment, we evaluate the scalability of NESwith

the Coordinator running on the hardware of TypeA andWorkers on Type B, forming a chained topol-

ogy. We compare the throughput and latency of three reliability levels, LOW, MEDIUM, and HIGH,

with epoch length 900, against no fault tolerance. These levels correlate to the number of deviceswith

fault tolerance operators deployed: more than 25% for LOW, 50% for MEDIUM, and 75% for HIGH.

Results. Similar to the previous experiment, Figures 11(a) and 11(b) demonstrate almost no differ-

ence in throughput and latency for the topology depth 4 and 6 compared to no fault tolerance. With

the topology depth of 8, the throughput of fault tolerance drops by 4%, and the latency increases by

more than two times from 60ms to 134ms. Finally, for the topology depth of 10, the throughput drops

by 85%, and the latency increases by 30%.

Overall, due to our highly efficient implementation of trimming, there is almost no difference

between different reliability levels, i.e., different numbers of nodes participating in fault tolerance.

The throughput reduction for the higher topology depth is due to the epoch value of 900, which is

sub-optimal for the topology depth of 10 (see Section 6.3.1).

6.3.3 Various queries. In this experiment, we assess the impact of epoch sizes 100, 500, and 900

on three types of NEXMark queries: 𝑁𝑥𝑄0, 𝑁𝑥𝑄2, and 𝑁𝑥𝑄8. To this end, we run NES on 8 nodes

formed in a tree topology with a depth of three. We launch the Coordinator on the hardware of Type

A and 7Workers on Type B and measure the throughput and latency at the final sink.

Results. Figures 12(a) and 12(b) reveal almost no difference in throughput and latency for all

the epoch lengths. The throughput of queries 𝑁𝑥𝑄0 and 𝑁𝑥𝑄2 differs by 3%, and latency is similar

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

138:22 Anastasiia Kozar, Bonaventura Del Monte, Steffen Zeuch, & Volker Markl

1 2 3 4 5 6
Time (s)

0

20

40

60

80

La
te

nc
y

(m
s)

100 500 900

Fig. 14. Recovery latency based on varying epochs.

1 2 3 4 5 6
Time (s)

0

1000

2000

3000

4000

5000

6000

La
te

nc
y

(m
s)

1 node
2 nodes

3 nodes
4 nodes

5 nodes

Fig. 15. Recovery latency based on the distance from
the failed device.

on average. Due to aggregation, 𝑁𝑥𝑄8 reduces the throughput by almost 47% compared to 𝑁𝑥𝑄0.

Additionally, latency in the case of the query 𝑁𝑥𝑄8 increases due to aggregation times.

The results of this experiment show that our fault tolerance approach works efficiently for a wide

range of different queries.

6.4 Overhead
In this set of experiments, we estimate the overhead of FTPs in NES as the additional decision time

of operator placement.

Decision time. To assess the decision time of our proposed algorithms, we conducted an exper-

iment using data from the OpenCellid database [8]. Specifically, we extracted information about LTE,

GSM, and UMTS towers located in Berlin, where LTE has 16147, GSM 29757, and UMTS 43602 towers

asanexampleof a runningUSECsystem.Basedoneach tower type,weconstruct aglobalworker topol-

ogywithin NES andmeasure NFTP,MFTP, andMFTP-H in combinationwith heuristic Bottom-Up (it

pushes computation as much to the edges as possible) and cost-based ILP operator placement strate-

gies. As a baseline to our FTP solutions, we introducedmodifications to the ILP and Bottom-Up opera-

tor placement strategies that incorporate a reliability constraint into their decision-making processes.

The modified ILP algorithm for the LTE topology required over 5 hours to complete. Similarly, the

modified Bottom-Up algorithm, which allocated an additional fault tolerance slot for each operator

placed, still took around 22 minutes to decide on placement for the UMTS dataset. Finally, FTP solu-

tions, in combination with operator placement strategies, take around 600ms to perform placement

of both processing and fault tolerance operators.

Results. In contrast to ILP, Bottom-Up and the FTP approaches focus on a smaller set of objectives

and, therefore, require less decision time. Furthermore, the FTP approaches simplify the placement

decision-making process for operator placement strategies by condensing it into a single path. Over-

all, the NFTP, MFTP, andMFTP-H approaches reduce the decision time by an order of magnitude

and provide an optimal solution in terms of reliability and operator placement.

6.5 Recovery
In the following experiments, we investigate how the main fault tolerance hyperparameter (Section

6.5.1) and fault tolerance placement (Section 6.5.2) affect system latency during failure recovery.

6.5.1 Impact of varying epoch length on recovery. To study the impact of different epoch values on

processing latency during recovery, we run NES on Type B hardware with 𝑁𝑥𝑄0 workload. We run

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

Fault Tolerance Placement in the Internet of Things 138:23

the systemwith 100 , 500 , and 900 epoch lengths. Every time, we simulate a worker failure

and measure the processing latency.

Results. Figure 14 shows the longest 1.3s spike for the 900 epoch length, 0.2s for 500, and 20ms

for 100. Larger epoch lengths result in storing more buffers, extending the duration of the recovery

process. On the one hand, smaller epoch lengths necessitate frequent trimming, which can reduce

overall throughput. Therefore, the epoch length serves as a tool to balance system throughput and

recovery latency.

6.5.2 Recovery based on fault tolerance placement. In Figure 15, we explore the correlation between
recovery latency and reliability levels, i.e., how many nodes are between the failed node and the

closest node with the fault tolerance operator deployed. To this end, we run NES on Type B hardware

with 𝑁𝑥𝑄0 workload on a chained topology with six nodes. We submit a query five times and fail

one node shortly after two seconds. We increase the number of nodes between the failed node and

the last node with fault tolerance deployed every time. The distance includes one node , 2 , 3

, 4 , and 5 nodes.

Results.The latency spikes due to data getting resend from the upstreambackup. Figure 15 demon-

strates thatwith theone-nodedistancebetweenthe failednodeandthenodewith theupstreambackup

deployed, the latency increases to 3s.Moreover, increasing the distance to twonodes further increases

latency to 5s. Conversely, distances 3, 4, and 5 differ in latency by less than 10%, staying around 6s.

Overall, lower reliability levels increase recovery latency due to larger data storage size, highlight-

ing the trade-off between data preservation and recovery speed. For instance, in scenarios with LOW

reliability, where only 25% of the devices participate in fault tolerance to preserve data, recovery

times can grow, particularly in large topology depths, as data may need to traverse the entire depth

in the worst-case scenario. Notably, we observe that placing fault tolerance mechanisms further

from the failed device results in longer recovery times. However, when fault tolerance mechanisms

are positioned closer to the data source, the risk of data loss decreases. This analysis reveals the

important trade-off between recovery time and data preservation that must be considered when

optimizing fault tolerance placement.

7 RELATEDWORK
The fault tolerance approaches developed for SPEs vary based on their targeted environment. As

USEC combines Sensor, Edge, and Cloud, we further classify fault tolerance approaches based on

these distinct environments.

Cloud-based SPEs. Existing cloud-tailored fault tolerance solutions like TelegraphCQ [27], Au-

rora [11], Flink [22], Rhino [32] and Heron [45] take advantage of virtually unlimited resources,

all-to-all connectivity and reliable networks. For instance, Aurora employsUpstreamBackup, logging

tuples in their output queues at upstreamnodes, while TelegraphCQutilizes Active Standby, allowing

secondary nodes to process tuples in parallel with primary nodes. In the case of Flink, it leverages

brokers like Kafka for data stream reproducibility and checkpointing to maintain a consistent global

state. However, all these solutions do not consider the resources required for fault tolerance and

obliviously deploy it on every device.WhileAurora and Flink analyze resources for loadmanagement,

they do not estimate the costs associated with fault tolerance during the job deployment. This lack of

resource awareness can result in job deployment on devices with insufficient resources, potentially

causing underprovisioning issues before the load-balancing algorithm identifies resource shortages.

Wireless Sensor Networks. Existing approaches for sensor processing systems like TinyDB [50]

andCougar [80] focusmore on resource utilization due to the limited hardware capabilities of sensors

and adaptivity to network fluctuations due to the high distributivity of the processing nodes. They

enable simple filtering and aggregation queries while considering battery capacities and unreliable

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

138:24 Anastasiia Kozar, Bonaventura Del Monte, Steffen Zeuch, & Volker Markl

networks. Existing fault-tolerance solutions forWireless Sensor Networks systems fail to provide

strong processing guarantees and cannot ensure reliability for computationally intensive processing.

Edge-based SPEs. Systems like Microsoft Azure IoT Edge [4], AWSGreengrass [1], CSA [69], and

Frontier [59] function without connectivity to the cloud. In the first three systems, data processing is

performed on hub devices, assuming that all nodes are connected to the hub device. These approaches

offer fault-tolerance only between hub-devices and the cloud but still require a stable connection

between sensors and the hub-device. In addition, they do not reflect the multi-level hierarchical

topologies that are typical for USEC environments. As an alternative, Frontier replicates its operators

across multiple nodes and maintains dynamic routing of data between replicas. Implementing one of

the most demanding fault tolerance mechanisms in the Edge, Frontier still lacks resource estimation

for fault tolerance, similar to Microsoft Azure, AWS Greengrass, and CSA.

Overall, all the abovementioned approaches lack awareness of the resources required by fault

tolerance. They run in silos on every device, independently of the resource availability and system

load. Additionally, none of these approaches adapt fault tolerance parameters during runtime to

enhance system resource management.

8 CONCLUSION
This paper introduces FTP approaches designed to determine optimal fault tolerance placement

and estimate associated costs in large-scale sensor-edge-cloud environments. These approaches

emphasize the critical factors of reliability and efficient resource utilization, with the primary goal

of avoiding underprovisioning and system failures. Using resource-reliability estimates, our FTP

methods identify the optimal path and number of devices for fault tolerance placement. The final

placement cost is integrated into the operator placement strategy to avoid underprovisioning. Fur-

thermore, our cost-based FTP solutions support adaptability to dynamic system changes through

real-time adjustments and hyperparameter tuning.

Our evaluation highlights the impact of fault tolerance on system performance. It reveals that

existing solutions often lead to data loss, device overutilization, and unnecessary resource consump-

tion. In contrast, our FTP approaches effectively mitigate potential failures and significantly reduce

placement decision time. Our lightweight implementation of fault tolerance outperforms comparable

state-of-the-art approaches in terms of throughput by an order of magnitude. This positions FTP

solutions as the cornerstone for efficient resource allocation and the support of reliable continuous

data stream processing in heterogeneous environments of massive scale.

9 ACKNOWLEDGEMENT
This work was funded by the DFG Priority Program (MA4662/5-2) and the German Federal Ministry

for Education andResearch as BIFOLD—Berlin Institute for the Foundations of Learning andData (ref.

01IS18025A and ref. 01IS18037A). We thank the NebulaStream team for their insightful comments

and fruitful discussions.

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

Fault Tolerance Placement in the Internet of Things 138:25

REFERENCES
[1] 2007. Amazon AWS Greengrass. Accessed May 2023: https://aws.amazon.com/greengrass/.

[2] 2011. John Wilkes. More Google Cluster Data. Google Research Blog,. Accessed Sep 2023: https:

//ai.googleblog.com/2011/11/more-google-cluster-data.html.

[3] 2016. Optimal operator placement for distributed stream processing applications. DEBS 2016 - Proceedings of the 10th
ACM International Conference on Distributed and Event-Based Systems, 69–80. https://doi.org/10.1145/2933267.2933312

[4] 2017. Microsoft Azure IoT Edge. Accessed Jul 2023: https://azure.microsoft.com/en-us/services/iot-edge/.

[5] 2022. Calculated MTBF Estimates. Accessed Mar 2023: https://www.intel.com/content/dam/support/us/en/documents/

motherboards/server/sb/s1200rpcalculatedmtbfestimatesrev1_0.pdf.

[6] 2022. How LongWill a Raspberry Pi Last? Accessed Dec 2019: hhttps://raspberrytips.com/how-long-will-a-raspberry-

pi-last/.

[7] 2022. MBDA CFMS. Accessed May 2023: https://www.mbda-systems.com/solutions-and-services/subsystems-

components/.

[8] 2022. OpenCellid. Accessed Apr 2023: https://www.opencellid.org/.

[9] 2022. Raspberry Pi 5.1V DC. Accessed Apr 2023: https://www.eetgroup.com/en-eu/t5875dv-raspberry-pi-13w-plug-

in-power-supply-51v-25a-white-micro-usb-wid-w124475952.

[10] 2023. What edge computing means for infrastructure and operations leaders. Accessed Sep 2023: https:

//www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders.

[11] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez, M. Hatoun, A. Maskey, A. Rasin,

A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan, and S. Zdonik. 2003. Aurora: a data streammanagement system. In

Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data (San Diego, California) (SIGMOD
’03). Association for Computing Machinery, New York, NY, USA, 666. https://doi.org/10.1145/872757.872855

[12] Tyler Akidau, Edmon Begoli, Slava Chernyak, Fabian Hueske, Kathryn Knight, Kenneth Knowles, Daniel Mills, and

Dan Sotolongo. 2021. Watermarks in stream processing systems: semantics and comparative analysis of Apache Flink

and Google cloud dataflow. Proc. VLDB Endow. 14, 12 (jul 2021), 3135–3147. https://doi.org/10.14778/3476311.3476389

[13] C. Albrecht, R. Koch, T. Pionteck, and P. Gloesekoetter. 2009. Towards a Flexible Fault-Tolerant System-on-Chip. In

22th International Conference on Architecture of Computing Systems 2009. 1–8.
[14] Leonardo Aniello, Roberto Baldoni, and Leonardo Querzoni. 2013. Adaptive Online Scheduling in Storm. In Proceedings

of the 7th ACM International Conference on Distributed Event-Based Systems (Arlington, Texas, USA) (DEBS ’13).
Association for Computing Machinery, New York, NY, USA, 207–218. https://doi.org/10.1145/2488222.2488267

[15] Amit ShuklaKarthikRamasamy JigneshM. Patel SanjeevKulkarni Jason JacksonKrishnaGadeMaosong Fu JakeDonham

Nikunj Bhagat Sailesh Mittal Dmitriy Ryaboy Ankit Toshniwal, Siddarth Taneja. 2014. Storm@Twitter. Proceedings of
the ACM SIGMOD International Conference on Management of Data, 147–156. https://doi.org/10.1145/2588555.2595641

[16] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2004. The CQL Continuous Query Language: Semantic Foundations

and Query Execution. VLDB J. 2 (03 2004). https://doi.org/10.1007/s00778-004-0147-z
[17] Hamid Reza Arkian, Abolfazl Diyanat, and Atefe Pourkhalili. 2017. MIST: Fog-based data analytics scheme with

cost-efficient resource provisioning for IoT crowdsensing applications. Journal of Network and Computer Applications
82 (2017), 152–165. https://doi.org/10.1016/j.jnca.2017.01.012

[18] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu, Reynold Xin, Ali Ghodsi, Ion Stoica,

and Matei Zaharia. 2018. Structured Streaming: A Declarative API for Real-Time Applications in Apache Spark. In

Proceedings of the 2018 International Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association
for Computing Machinery, New York, NY, USA, 601–613. https://doi.org/10.1145/3183713.3190664

[19] Nathan Backman, Rodrigo Fonseca, and Uundefinedur Çetintemel. 2012. Managing Parallelism for Stream

Processing in the Cloud. In Proceedings of the 1st International Workshop on Hot Topics in Cloud Data Processing
(Bern, Switzerland) (HotCDP ’12). Association for Computing Machinery, New York, NY, USA, Article 1, 5 pages.

https://doi.org/10.1145/2169090.2169091

[20] Magdalena Balazinska, Hari Balakrishnan, Samuel R. Madden, and Michael Stonebraker. 2008. Fault-tolerance in

the borealis distributed stream processing system. ACM Trans. Database Syst. 33, 1, Article 3 (mar 2008), 44 pages.

https://doi.org/10.1145/1331904.1331907

[21] Christian Berger, Philipp Eichhammer, Hans P. Reiser, Jörg Domaschka, Franz J. Hauck, and Gerhard Habiger. 2022.

A Survey on Resilience in the IoT: Taxonomy, Classification, and Discussion of Resilience Mechanisms. Comput. Surveys
54 (9 2022). Issue 7. https://doi.org/10.1145/3462513

[22] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas Tzoumas. 2017. State Management

in Apache Flink®: Consistent Stateful Distributed Stream Processing. Proc. VLDB Endow. 10, 12 (aug 2017), 1718–1729.
https://doi.org/10.14778/3137765.3137777

[23] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas. 2015. Apache

Flink™: Stream and Batch Processing in a Single Engine. IEEE Data Eng. Bull. 38 (2015), 28–38.

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

https://aws.amazon.com/greengrass/
https://ai.googleblog.com/2011/11/more-google-cluster-data.html
https://ai.googleblog.com/2011/11/more-google-cluster-data.html
https://doi.org/10.1145/2933267.2933312
https://azure.microsoft.com/en-us/services/iot-edge/
https://www.intel.com/content/dam/support/us/en/documents/motherboards/server/sb/s1200rpcalculatedmtbfestimatesrev1_0.pdf
https://www.intel.com/content/dam/support/us/en/documents/motherboards/server/sb/s1200rpcalculatedmtbfestimatesrev1_0.pdf
hhttps://raspberrytips.com/how-long-will-a-raspberry-pi-last/
hhttps://raspberrytips.com/how-long-will-a-raspberry-pi-last/
https://www.mbda-systems.com/solutions-and-services/subsystems-components/
https://www.mbda-systems.com/solutions-and-services/subsystems-components/
https://www.opencellid.org/
https://www.eetgroup.com/en-eu/t5875dv-raspberry-pi-13w-plug-in-power-supply-51v-25a-white-micro-usb-wid-w124475952
https://www.eetgroup.com/en-eu/t5875dv-raspberry-pi-13w-plug-in-power-supply-51v-25a-white-micro-usb-wid-w124475952
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://doi.org/10.1145/872757.872855
https://doi.org/10.14778/3476311.3476389
https://doi.org/10.1145/2488222.2488267
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1016/j.jnca.2017.01.012
https://doi.org/10.1145/3183713.3190664
https://doi.org/10.1145/2169090.2169091
https://doi.org/10.1145/1331904.1331907
https://doi.org/10.1145/3462513
https://doi.org/10.14778/3137765.3137777

138:26 Anastasiia Kozar, Bonaventura Del Monte, Steffen Zeuch, & Volker Markl

[24] Paris Carbone, Jonas Traub, Asterios Katsifodimos, Seif Haridi, and Volker Markl. 2016. Cutty: Aggregate Sharing

for User-DefinedWindows. In Proceedings of the 25th ACM International on Conference on Information and Knowledge
Management (Indianapolis, Indiana, USA) (CIKM ’16). Association for Computing Machinery, New York, NY, USA,

1201–1210. https://doi.org/10.1145/2983323.2983807

[25] Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and Gabriele Russo Russo. 2022. Runtime Adaptation of

Data Stream Processing Systems: The State of the Art. ACM Comput. Surv. 54, 11s, Article 237 (sep 2022), 36 pages.

https://doi.org/10.1145/3514496

[26] UgurCetintemel, JiangDu, TimKraska, SamuelMadden, DavidMaier, JohnMeehan, AndrewPavlo,Michael Stonebraker,

Erik Sutherland, NesimeTatbul, Kristin Tufte, HaoWang, and Stanley Zdonik. 2014. S-Store: a streamingNewSQL system

for big velocity applications. Proc. VLDB Endow. 7, 13 (aug 2014), 1633–1636. https://doi.org/10.14778/2733004.2733048

[27] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, JosephM. Hellerstein, Wei Hong, Sailesh

Krishnamurthy, Samuel R. Madden, Fred Reiss, and Mehul A. Shah. 2003. TelegraphCQ: continuous dataflow processing.

In Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data (San Diego, California)

(SIGMOD ’03). Association for Computing Machinery, New York, NY, USA, 668. https://doi.org/10.1145/872757.872857

[28] Rémy Charayron, Thierry Lefebvre, Nathalie Bartoli, and Joseph Morlier. 2023. Towards a multi-fidelity &

multi-objective Bayesian optimization efficient algorithm. Aerospace Science and Technology 142 (2023), 108673.

https://doi.org/10.1016/j.ast.2023.108673

[29] Andreas Chatzistergiou and Stratis D. Viglas. 2014. Fast Heuristics for Near-Optimal Task Allocation in Data Stream

Processing over Clusters. In Proceedings of the 23rd ACM International Conference on Conference on Information and
Knowledge Management (Shanghai, China) (CIKM ’14). Association for Computing Machinery, New York, NY, USA,

1579–1588. https://doi.org/10.1145/2661829.2661882

[30] Ankit Chaudhary, Steffen Zeuch, and Volker Markl. 2020. Governor: Operator Placement for a Unified Fog-Cloud

Environment. (2020), 631–634. https://doi.org/10.5441/002/EDBT.2020.81

[31] Ankit Chaudhary, Steffen Zeuch, Volker Markl, and Jeyhun Karimov. 2023. Incremental Stream Query Merging. In

Proceedings 26th International Conference on Extending Database Technology, EDBT 2023, Ioannina, Greece, March 28-31,
2023, Julia Stoyanovich, Jens Teubner, Nikos Mamoulis, Evaggelia Pitoura, Jan Mühlig, Katja Hose, Sourav S. Bhowmick,

and Matteo Lissandrini (Eds.). OpenProceedings.org, 604–617. https://doi.org/10.48786/EDBT.2023.51

[32] Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl, and Volker Markl. 2020. Rhino: Efficient Management of Very

Large Distributed State for Stream Processing Engines. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY, USA,

2471–2486. https://doi.org/10.1145/3318464.3389723

[33] Michael Emmerich and André Deutz. 2018. A tutorial on multiobjective optimization: fundamentals and evolutionary

methods. Natural Computing 17 (09 2018). https://doi.org/10.1007/s11047-018-9685-y
[34] Philipp M. Grulich, Aljoscha P. Lepping, Dwi Prasetyo Adi Nugroho, Varun Pandey, Bonaventura Del Monte, Steffen

Zeuch, and Volker Markl. 2023. Towards Unifying Query Interpretation and Compilation. In 13th Conference on
Innovative Data Systems Research, CIDR 2023, Amsterdam, The Netherlands, January 8-11, 2023. www.cidrdb.org.

https://www.cidrdb.org/cidr2023/papers/p49-grulich.pdf

[35] Philipp M. Grulich, Breß Sebastian, Steffen Zeuch, Jonas Traub, Janis von Bleichert, Zongxiong Chen, Tilmann Rabl,

and Volker Markl. 2020. Grizzly: Efficient Stream Processing Through Adaptive Query Compilation. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data (Portland, OR, USA) (SIGMOD ’20). Association
for Computing Machinery, New York, NY, USA, 2487–2503. https://doi.org/10.1145/3318464.3389739

[36] Philipp Marian Grulich, Steffen Zeuch, and Volker Markl. 2021. Babelfish: Efficient Execution of Polyglot Queries. Proc.
VLDB Endow. 15, 2 (2021), 196–210. https://doi.org/10.14778/3489496.3489501

[37] Divya Gupta, Shalli Rani, and Syed Hassan Ahmed Shah. 2022. ICN-Fog Computing for IoT-Based Healthcare. 19–37.
https://doi.org/10.1002/9781119816829.ch2

[38] Shahid Sultan Hajam and Shabir Ahmad Sofi. 2021. IoT-Fog architectures in smart city applications: A survey. China
Communications 18, 11 (2021), 117–140. https://doi.org/10.23919/JCC.2021.11.009

[39] Mark Hung. 2017. Leading the iot, gartner outsides on how to lead in a connected world.
[40] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and S. Zdonik. 2005. High-availability

algorithms for distributed stream processing. In 21st International Conference on Data Engineering (ICDE’05). 779–790.
https://doi.org/10.1109/ICDE.2005.72

[41] Jeong-Hyon Hwang, Ying Xing, Ugur Cetintemel, and Stan Zdonik. 2007. A Cooperative, Self-Configuring High-

Availability Solution for Stream Processing. In 2007 IEEE 23rd International Conference on Data Engineering. 176–185.
https://doi.org/10.1109/ICDE.2007.367863

[42] Gerrit Janßen, Ilya Verbitskiy, Thomas Renner, and Lauritz Thamsen. 2018. Scheduling Stream Processing Tasks on

Geo-Distributed Heterogeneous Resources. In 2018 IEEE International Conference on Big Data (Big Data). 5159–5164.
https://doi.org/10.1109/BigData.2018.8622651

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

https://doi.org/10.1145/2983323.2983807
https://doi.org/10.1145/3514496
https://doi.org/10.14778/2733004.2733048
https://doi.org/10.1145/872757.872857
https://doi.org/10.1016/j.ast.2023.108673
https://doi.org/10.1145/2661829.2661882
https://doi.org/10.5441/002/EDBT.2020.81
https://doi.org/10.48786/EDBT.2023.51
https://doi.org/10.1145/3318464.3389723
https://doi.org/10.1007/s11047-018-9685-y
https://www.cidrdb.org/cidr2023/papers/p49-grulich.pdf
https://doi.org/10.1145/3318464.3389739
https://doi.org/10.14778/3489496.3489501
https://doi.org/10.1002/9781119816829.ch2
https://doi.org/10.23919/JCC.2021.11.009
https://doi.org/10.1109/ICDE.2005.72
https://doi.org/10.1109/ICDE.2007.367863
https://doi.org/10.1109/BigData.2018.8622651

Fault Tolerance Placement in the Internet of Things 138:27

[43] Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, Desislava Dimitrova, Matthew Forshaw, and Timothy Roscoe.

2018. Three Steps is All You Need: Fast, Accurate, Automatic Scaling Decisions for Distributed Streaming Dataflows.

In Proceedings of the 13th USENIX Conference on Operating Systems Design and Implementation (Carlsbad, CA, USA)
(OSDI’18). USENIX Association, USA, 783–798.

[44] Fahad Khan, Muhammad Abu Bakar Siddiqui, Ateeq Ur Rehman, Jawad Khan, Muhammad Tariq Sadiq Adeel Asad,

and Adeel Asad. 2020. IoT Based PowerMonitoring System for Smart Grid Applications. In 2020 International Conference
on Engineering and Emerging Technologies (ICEET). 1–5. https://doi.org/10.1109/ICEET48479.2020.9048229

[45] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel,

Karthik Ramasamy, and Siddarth Taneja. 2015. Twitter Heron: Stream Processing at Scale. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (Melbourne, Victoria, Australia) (SIGMOD ’15). Association
for Computing Machinery, New York, NY, USA, 239–250. https://doi.org/10.1145/2723372.2742788

[46] YongChul Kwon, Magdalena Balazinska, and Albert Greenberg. 2008. Fault-tolerant stream processing using a

distributed, replicated file system. Proc. VLDB Endow. 1, 1 (aug 2008), 574–585. https://doi.org/10.14778/1453856.1453920

[47] Aljoscha P. Lepping, HoangMi Pham, Laura Mons, Balint Rueb, Philipp M. Grulich, Ankit Chaudhary, Steffen Zeuch,

and Volker Markl. 2023. Showcasing Data Management Challenges for Future IoT Applications with NebulaStream.

Proc. VLDB Endow. 16, 12 (2023), 3930–3933. https://doi.org/10.14778/3611540.3611588
[48] Jian Li, Amol Deshpande, and Samir Khuller. 2009. Minimizing Communication Cost in Distributed Multi-query

Processing. In2009 IEEE25th InternationalConference onDataEngineering. 772–783. https://doi.org/10.1109/ICDE.2009.85
[49] Wei Lin, Haochuan Fan, Zhengping Qian, Junwei Xu, Sen Yang, Jingren Zhou, and Lidong Zhou. 2016. STREAMSCOPE:

continuous reliable distributed processing of big data streams. In Proceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation (Santa Clara, CA) (NSDI’16). USENIX Association, USA, 439–453.

[50] Samuel Madden, Michael Franklin, Joseph Hellerstein, and Wei Hong. 2005. TinyDB: An Acquisitional

Query Processing System for Sensor Networks. ACM Transactions on Database Systems 30 (03 2005), 122–173.

https://doi.org/10.1145/1061318.1061322

[51] Marco Marcozzi, Orhan Gemikonakli, Eser Gemikonakli, Enver Ever, and Leonardo Mostarda. 2023. Availability

evaluation of IoT systems with Byzantine fault-tolerance for mission-critical applications. Internet of Things 23 (2023),
100889. https://doi.org/10.1016/j.iot.2023.100889

[52] R. Marler and Jasbir Arora. 2004. Survey of Multi-Objective Optimization Methods for Engineering. Structural and
Multidisciplinary Optimization 26 (04 2004), 369–395. https://doi.org/10.1007/s00158-003-0368-6

[53] A.Messac, A. Ismail-Yahaya, andC.A.Mattson. 2003. The normalized normal constraintmethod for generating the Pareto

frontier. Structural and Multidisciplinary Optimization 25 (07 2003), 86–98. https://doi.org/10.1007/s00158-002-0276-1
[54] Adrian Michalke, Philipp M. Grulich, Clemens Lutz, Steffen Zeuch, and Volker Markl. 2021. An Energy-Efficient Stream

Join for the Internet of Things. In Proceedings of the 17th International Workshop on Data Management on New Hardware
(Virtual Event, China) (DAMON ’21). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages.

https://doi.org/10.1145/3465998.3466005

[55] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín Abadi. 2013. Naiad:

a timely dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles
(Farminton, Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY, USA, 439–455.

https://doi.org/10.1145/2517349.2522738

[56] Matteo Nardelli, Valeria Cardellini, Vincenzo Grassi, and Francesco Lo Presti. 2019. Efficient Operator Placement for

Distributed Data Stream Processing Applications. IEEE Transactions on Parallel and Distributed Systems 30, 8 (2019),
1753–1767. https://doi.org/10.1109/TPDS.2019.2896115

[57] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst, Indranil Gupta, and Roy H. Campbell.

2017. Samza: stateful scalable stream processing at LinkedIn. Proc. VLDB Endow. 10, 12 (aug 2017), 1634–1645.

https://doi.org/10.14778/3137765.3137770

[58] Dwi P. A. Nugroho, Philipp M. Grulich, Steffen Zeuch, Clemens Lutz, Stefano Bortoli, and Volker Markl. 2024.

Benchmarking Stream Join Algorithms on GPUs: A Framework and its Application to the State-of-the-art. In Proceedings
27th International Conference on Extending Database Technology, EDBT 2024, Paestum, Italy, March 25 - March 28, Letizia
Tanca, Qiong Luo, Giuseppe Polese, LoredanaCaruccio, XavierOriol, andDonatella Firmani (Eds.). OpenProceedings.org,

188–200. https://doi.org/10.48786/EDBT.2024.17

[59] Dan O’Keeffe, Theodoros Salonidis, and Peter Pietzuch. 2018. Frontier: resilient edge processing for the internet of

things. Proc. VLDB Endow. 11, 10, 1178–1191. https://doi.org/10.14778/3231751.3231767

[60] Boyang Peng, Mohammad Hosseini, Zhihao Hong, Reza Farivar, and Roy Campbell. 2015. R-Storm. In Proceedings
of the 16th Annual Middleware Conference. ACM. https://doi.org/10.1145/2814576.2814808

[61] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and M. Seltzer. 2006. Network-Aware Operator

Placement for Stream-Processing Systems. In 22nd International Conference on Data Engineering (ICDE’06). 49–49.
https://doi.org/10.1109/ICDE.2006.105

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

https://doi.org/10.1109/ICEET48479.2020.9048229
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.14778/1453856.1453920
https://doi.org/10.14778/3611540.3611588
https://doi.org/10.1109/ICDE.2009.85
https://doi.org/10.1145/1061318.1061322
https://doi.org/10.1016/j.iot.2023.100889
https://doi.org/10.1007/s00158-003-0368-6
https://doi.org/10.1007/s00158-002-0276-1
https://doi.org/10.1145/3465998.3466005
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1109/TPDS.2019.2896115
https://doi.org/10.14778/3137765.3137770
https://doi.org/10.48786/EDBT.2024.17
https://doi.org/10.14778/3231751.3231767
https://doi.org/10.1145/2814576.2814808
https://doi.org/10.1109/ICDE.2006.105

138:28 Anastasiia Kozar, Bonaventura Del Monte, Steffen Zeuch, & Volker Markl

[62] Stamatia Rizou, Frank Dürr, and Kurt Rothermel. 2010. Solving the Multi-Operator Placement Problem in Large-Scale

Operator Networks. In 2010 Proceedings of 19th International Conference on Computer Communications and Networks.
1–6. https://doi.org/10.1109/ICCCN.2010.5560127

[63] Hooman Peiro Sajjad, Ken Danniswara, Ahmad Al-Shishtawy, and Vladimir Vlassov. 2016. SpanEdge: Towards Unifying

Stream Processing over Central and Near-the-Edge Data Centers. In 2016 IEEE/ACM Symposium on Edge Computing
(SEC). 168–178. https://doi.org/10.1109/SEC.2016.17

[64] Matthias J. Sax, GuozhangWang, MatthiasWeidlich, and Johann-Christoph Freytag. 2018. Streams and Tables: Two

Sides of the Same Coin. In Proceedings of the International Workshop on Real-Time Business Intelligence and Analytics
(Rio de Janeiro, Brazil) (BIRTE ’18). Association for Computing Machinery, New York, NY, USA, Article 1, 10 pages.

https://doi.org/10.1145/3242153.3242155

[65] Nils L Schubert, Philipp M Grulich, Steffen Zeuch, and Volker Markl. 2023. Exploiting Access Pattern Char-

acteristics for Join Reordering. In Proceedings of the 19th International Workshop on Data Management on New
Hardware (Seattle, WA, USA) (DaMoN ’23). Association for Computing Machinery, New York, NY, USA, 10–18.

https://doi.org/10.1145/3592980.3595304

[66] Zoe Sebepou and Kostas Magoutis. 2011. CEC: Continuous eventual checkpointing for data stream processing operators.

145 – 156. https://doi.org/10.1109/DSN.2011.5958214

[67] Kinza Shafique, Bilal A. Khawaja, Farah Sabir, Sameer Qazi, and MuhammadMustaqim. 2020. Internet of Things (IoT)

for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT

Scenarios. IEEE Access 8 (2020), 23022–23040. https://doi.org/10.1109/ACCESS.2020.2970118
[68] Haris Moazam Sheikh and Philip S. Marcus. 2022. Bayesian optimization for mixed-variable, multi-objective problems.

Struct. Multidiscip. Optim. 65, 11 (nov 2022), 14 pages. https://doi.org/10.1007/s00158-022-03382-y

[69] Zhitao Shen, Vikram Kumaran, Michael J. Franklin, Sailesh Krishnamurthy, Amit Bhat, Madhu Kumar, Robert Lerche,

and Kim Macpherson. 2015. CSA: Streaming Engine for Internet of Things. IEEE Data Eng. Bull. 38, 4 (2015), 39–50.
http://sites.computer.org/debull/A15dec/p39.pdf

[70] Rathin Chandra Shit and Suraj Sharma. 2018. Localization for Autonomous Vehicle: Analysis of Importance of IoT

Network Localization for AutonomousVehicle Applications. In 2018 International Conference onApplied Electromagnetics,
Signal Processing and Communication (AESPC), Vol. 1. 1–6. https://doi.org/10.1109/AESPC44649.2018.9033329

[71] Fei Song, Khaled Zaouk, Chenghao Lyu, Arnab Sinha, Qi Fan, Yanlei Diao, and Prashant Shenoy. 2021. Spark-based

CloudData Analytics usingMulti-Objective Optimization. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE). 396–407. https://doi.org/10.1109/ICDE51399.2021.00041

[72] Marcelo Sousa and Isil Dillig. 2016. Cartesian Hoare Logic for Verifying K-Safety Properties. SIGPLAN Not. 51, 6 (jun
2016), 57–69. https://doi.org/10.1145/2980983.2908092

[73] Ioana Stanoi, George Mihaila, Themis Palpanas, and Christian Lang. 2007. WhiteWater: Distributed Processing of Fast

Streams. IEEE Trans. on Knowl. and Data Eng. 19, 9 (sep 2007), 1214–1226. https://doi.org/10.1109/TKDE.2007.1056

[74] Li Su and Yongluan Zhou. 2016. Tolerating correlated failures in Massively Parallel Stream Processing Engines. In 2016
IEEE 32nd International Conference on Data Engineering (ICDE). 517–528. https://doi.org/10.1109/ICDE.2016.7498267

[75] Peter A. Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. 2002. NEXMark – A Benchmark for Queries over

Data Streams DRAFT. https://api.semanticscholar.org/CorpusID:18302897

[76] Prasang Upadhyaya, YongChul Kwon, and Magdalena Balazinska. 2011. A latency and fault-tolerance optimizer

for online parallel query plans. In Proceedings of the 2011 ACM SIGMOD International Conference on Management
of Data (Athens, Greece) (SIGMOD ’11). Association for Computing Machinery, New York, NY, USA, 241–252.

https://doi.org/10.1145/1989323.1989350

[77] HuayongWang, Li-Shiuan Peh, Emmanouil Koukoumidis, Shao Tao, andMun Choon Chan. 2012. Meteor Shower: A

Reliable Stream Processing System for Commodity Data Centers. In 2012 IEEE 26th International Parallel and Distributed
Processing Symposium. 1180–1191. https://doi.org/10.1109/IPDPS.2012.108

[78] HongyanWang, Hua Xu, Yuan Yuan, and Zeqiu Zhang. 2022. An adaptive batch Bayesian optimization approach for

expensive multi-objective problems. Information Sciences 611 (2022), 446–463. https://doi.org/10.1016/j.ins.2022.08.021

[79] Jielong Xu, Zhenhua Chen, Jian Tang, and Sen Su. 2014. T-Storm: Traffic-Aware Online Scheduling in Storm. In 2014
IEEE 34th International Conference on Distributed Computing Systems. 535–544. https://doi.org/10.1109/ICDCS.2014.61

[80] Yong Yao and Johannes Gehrke. 2002. The cougar approach to in-network query processing in sensor networks.

SIGMOD Rec. 31, 3 (sep 2002), 9–18. https://doi.org/10.1145/601858.601861

[81] Steffen Zeuch, Ankit Chaudhary, Bonaventura Del Monte, Haralampos Gavriilidis, Dimitrios Giouroukis, PhilippM.

Grulich, Sebastian Breß, Jonas Traub, and Volker Markl. 2020. The NebulaStream Platform for Data and Application

Management in the Internet of Things. (2020). http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf

[82] Qian Zhu and Gagan Agrawal. 2008. Resource Allocation for Distributed Streaming Applications. In 2008 37th
International Conference on Parallel Processing. 414–421. https://doi.org/10.1109/ICPP.2008.49

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

https://doi.org/10.1109/ICCCN.2010.5560127
https://doi.org/10.1109/SEC.2016.17
https://doi.org/10.1145/3242153.3242155
https://doi.org/10.1145/3592980.3595304
https://doi.org/10.1109/DSN.2011.5958214
https://doi.org/10.1109/ACCESS.2020.2970118
https://doi.org/10.1007/s00158-022-03382-y
http://sites.computer.org/debull/A15dec/p39.pdf
https://doi.org/10.1109/AESPC44649.2018.9033329
https://doi.org/10.1109/ICDE51399.2021.00041
https://doi.org/10.1145/2980983.2908092
https://doi.org/10.1109/TKDE.2007.1056
https://doi.org/10.1109/ICDE.2016.7498267
https://api.semanticscholar.org/CorpusID:18302897
https://doi.org/10.1145/1989323.1989350
https://doi.org/10.1109/IPDPS.2012.108
https://doi.org/10.1016/j.ins.2022.08.021
https://doi.org/10.1109/ICDCS.2014.61
https://doi.org/10.1145/601858.601861
http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf
https://doi.org/10.1109/ICPP.2008.49

Fault Tolerance Placement in the Internet of Things 138:29

[83] Ariane Ziehn, Philipp M. Grulich, Steffen Zeuch, and Volker Markl. 2024. Bridging the Gap: Complex Event Processing

on Stream Processing Systems. In Proceedings 27th International Conference on Extending Database Technology, EDBT
2024, Paestum, Italy, March 25 - March 28, Letizia Tanca, Qiong Luo, Giuseppe Polese, Loredana Caruccio, Xavier Oriol,
and Donatella Firmani (Eds.). OpenProceedings.org, 447–460. https://doi.org/10.48786/EDBT.2024.39

Received 20 October 2023; revised 19 December 2023; accepted 23 Februrary 2024

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 138. Publication date: June 2024.

https://doi.org/10.48786/EDBT.2024.39

	Abstract
	1 Introduction
	2 Background
	2.1 Stream Processing
	2.2 Operator Placement Strategies
	2.3 Recovery Approaches

	3 Fault Tolerance Placement Problem
	3.1 Problem Statement
	3.2 Single-objective Optimization
	3.3 Multi-objective Optimization

	4 Fault Tolerance Cost Estimation
	4.1 Estimation of Resource Utilization
	4.2 K-Safety

	5 Fault Tolerance Placement
	5.1 Naive FTP
	5.2 Multi-objective FTP
	5.3 Runtime Adaptation

	6 Evaluation
	6.1 Experimental Setup
	6.2 System Comparison
	6.3 Impact of Fault Tolerance
	6.4 Overhead
	6.5 Recovery

	7 Related Work
	8 Conclusion
	9 Acknowledgement
	References

