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ABSTRACT

The Internet of Things (IoT) is rapidly growing into a network of billions of interconnected physical devices that constantly
stream data. To enable data-driven IoT applications, data management systems like NebulaStream have emerged that
manage and process data streams, potentially in combination with data at rest, in a heterogeneous distributed environment
of cloud and edge devices. To perform internal optimizations, an IoT data management system requires a monitoring
component that collects system metrics of the underlying infrastructure and application metrics of the running processing
tasks. In this paper, we explore the applicability of existing cloud-based monitoring solutions for stream processing engines
in an IoT environment. To this end, we provide an overview of commonly used approaches, discuss their design, and
outline their suitability for the IoT. Furthermore, we experimentally evaluate different monitoring scenarios in an IoT
environment and highlight bottlenecks and inefficiencies of existing approaches. Based on our study, we show the need for
novel monitoring solutions for the IoT and define a set of requirements.
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1 INTRODUCTION

Stream processing engines (SPEs) such as Spark [30], Flink
[1], Storm [17], and Kafka Streams [16] are nowadays widely
used for various applications that require managing and
processing data in real-time. Some example applications are
location-tracking services, fabrication line management, and
network management [24]. SPEs are designed to distribute
the workload horizontally across thousands of servers that
are usually located in data centers on-premise or hosted by
various cloud providers. However, the upcoming Internet
of Things (IoT) triggered an ongoing effort to develop an
IoT data management system that can exploit the processing
capabilities of cloud-external devices in addition to the cloud
servers. One recently proposed data management system
for the IoT is NebulaStream (NES) [31, 33]. NES manages
and processes data streams, potentially in combination with

data at rest, in a heterogeneous distributed environment of
cloud and (potentially mobile) edge devices. In contrast to
prior engines, NES can cope with the heterogeneity and
distribution of compute and data, deal with potentially
unreliable communication, and constantly evolve under
continuous operation. Overall, NES extends the processing
capabilities of data management systems beyond the cloud,
which is becoming increasingly important as the amount of
edge devices is rising.

To enable efficient data processing at scale, SPEs apply
several system-internal optimizations. To this end, there
are various approaches that address different performance
problems, e.g., state management [9], operator placement
[6, 8, 21, 23, 29], scheduling [3, 7], query compilation [14],
adaptive sampling [12], and load shedding [4]. To perform
optimization decisions, all these approaches require accurate
system metrics of the underlying infrastructure as well as
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applications metrics of the running tasks. To provide these
metrics, SPEs need a monitoring component that monitors
the infrastructure (e.g., available resources on the devices,
utilized bandwidth), detects node failures, and measures
the performance of internal components (e.g., operator
throughput). In addition to being performant and scalable,
the monitoring component should be robust, non-intrusive,
interoperable across different infrastructures, and should
support live migration [25].

Monitoring the performance of a highly distributed
cloud-based SPE is already challenging. Monitoring an SPE
in an IoT environment exacerbates the challenge even further,
as IoT environments are geo-distributed, very heterogeneous,
highly dynamic, and volatile [31]. The collected metrics can
become quickly outdated due to device or network failures
and fluctuating load. In particular, cloud-based systems run
on a well-defined infrastructure of high-end servers with
reliable network connections and scale up to thousands of
nodes. In contrast, IoT data management systems have to
scale to millions or even billions of nodes and incorporate
edge devices that use limited network bandwidth and are
prone to failures and disconnections [20]. Furthermore,
future IoT-driven applications have to process thousands of
user queries that are running in parallel [31], which makes
the system load very ad-hoc and unpredictable. Finally,
while there exist several industry-established performance
monitoring solutions for cloud-based systems [18, 19, 22],
there are no established solutions for IoT data management
systems like NES, as these systems represent an emerging
technology field.

In this paper, we analyze two common approaches for
performance monitoring in cloud-based SPEs and investigate
their applicability in large-scale IoT settings. The first
approach uses an external general-purpose monitoring
system to monitor the performance of the SPE. In contrast,
the second approach implements monitoring internally
within the SPE. As the first approach is widely adopted
in industry, we experimentally evaluate whether it can be
applied efficiently in an IoT setting, despite being designed
for the cloud. Finally, based on our analysis, we highlight
the need to re-design monitoring frameworks for IoT data
management systems and sketch a set of requirements.

In the remainder of the paper, we first explore commonly
used SPEs with respect to the architecture of their monitoring
components and discuss their integration with external
general-purpose monitoring systems like Prometheus (cf.
Section 2). After that, we evaluate experimentally the
applicability of a general-purpose monitoring solution (i.e.,
Prometheus) for monitoring a cluster of typical IoT devices in
Section 3. Finally, we highlight the need for novel monitoring
solutions and specify a set of requirements for efficient
performance monitoring for data management systems in
the IoT in Section 4, before concluding in Section 5.

Figure 1: Architecture of external monitoring systems.

2 MONITORING OF STREAM PROCESSING
ENGINES IN THE CLOUD

Stream processing engines like Flink require two types of
metrics for internal decisions [5, 34]. First, they require
system metrics of the underlying infrastructure (e.g.,
containers, virtual machines, or bare-metal processes)
like available memory, bandwidth, or CPU utilization.
Second, they require application metrics that are generated
by internal components of the SPE (e.g. throughput of
different operators). System and application metrics can be
obtained either externally using third-party, general-purpose
monitoring systems or internally using a build-in component
within the SPE. Next, we review state-of-the-art solutions for
external monitoring in Section 2.1 and internal monitoring
in Section 2.2, before drawing general conclusions in
Section 2.3.

2.1 SPE-External Monitoring

External monitoring systems like Ganglia [18], Nagios [19],
JCatascopia [27], the Elastic ecosystem [11] or Prometheus
[22] consist of four major components (c.f., Figure 1): 1)
monitoring agents, 2) monitoring server, 3) data storage,
4) analytics & visualization. The monitoring agents are
daemons running on different nodes of the compute
topology. Nodes are usually servers, virtual machines,
or containers. The monitoring agents are responsible to
retrieve performance metrics of nodes (e.g., CPU utilization
or memory consumption) as well as application-specific
metrics. The agents transmit then these metrics to the
monitoring server via push- or pull-based techniques. With
pull-based techniques, the metrics are collected on demand
by using, e.g., a RESTful API. In contrast, push-based
techniques collect metrics continuously by forwarding them
based on given conditions, e.g., at fixed time intervals.
Depending on the topology, some monitoring systems also
allow to organize monitoring agents hierarchically, such that
metrics can be aggregated in intermediate layers using either
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Figure 2: Monitoring in cloud-based SPEs.

push- or pull-based techniques to reduce the overall amount
of data. The monitoring server receives the metrics from the
agents and processes them through grouping, aggregation,
or by creating alerts or notifications based on events or
thresholds [18, 19]. Monitoring servers can be deployed
on either physical or virtual instances and do not need to
reside on the same node as the monitoring agents. The data
storage persists the collected metrics. Since metrics contain
both a value and a timestamp that indicates the time of the
measurement, they are typically stored in key-value stores
like InfluxDB [15]. After the metrics have been processed
and archived, they are presented to users together with alerts
and notifications via graphs or dashboards in the analytics
& visualization component. Common tools for analytics and
visualization are Grafana [13] or Kibana [11].

External monitoring frameworks monitor SPEs as follows:
1) the monitoring agents collect metrics from the worker
nodes and the master of the SPE, 2) send the metrics to
the monitoring server for processing, and 3) transmit the
processed metrics back to the master node of the SPE.
This solution has two major drawbacks. On the one hand,
it creates a strong dependency between the SPE and an
external system, which makes the dependent components
harder to maintain in case of changes. On the other hand,
metrics have to cross multiple system boundaries, i.e., from
the SPE to the monitoring system and then again back
to the SPE, which creates an unnecessary overhead [32].
Monitoring an SPE using solely external monitoring systems
is thus inefficient. To alleviate this inefficiency, some
cloud-based SPEs like Flink, Spark, and Storm implement
their own internal monitoring components, which we discuss
in the next section.

2.2 SPE-Internal Monitoring

From a high-level architectural perspective, cloud-based
SPEs (e.g., Flink, Spark, and Storm) consist of the following
common components for monitoring: 1) metrics manager,
2) SPE components, 3) master node, and 4) external

Figure 3: Performance monitoring in Apache Flink [2].

monitoring system (cf. Figure 2). The metrics manager
retrieves performance metrics from the Java Virtual Machine
(JVM) instance and from internal components of the SPE.
Afterwards, the metrics are forwarded to the corresponding
destinations, which can be components inside the workers
that require monitoring data, the master node, or external
systems.

In the remainder of this section, we focus on three
important aspects of performance monitoring in SPEs.
Section 2.2.1 describes the gathering of metrics, i.e., the
process of collecting metrics from monitored components.
Section 2.2.2 describes the management of metrics, i.e.,
how the SPE administrates and represents metrics internally.
Finally, Section 2.2.3 illustrates the integration of the SPE
with external third-party monitoring systems and discusses
how the SPE makes metrics available to these systems.

2.2.1 Metric Gathering

Common cloud-based SPEs have an integrated component
for gathering system and application metrics [1, 17, 30].
Flink provides a pull-based and a push-based approach
for collecting metrics. In the pull-based approach, all
worker nodes expose an endpoint, e.g., REST or RPC. The
destination node is then able to query the metrics from
all nodes whenever new or updated values are required.
In contrast, the push-based approach is initiated from
the worker nodes. Hereby, a configuration on each node
defines when the transmission of metrics has to be triggered.
Triggers are commonly time-based (e.g. transmit data every
10s) or event-based (transmit data after a given threshold
has been exceeded). Flink and Spark enable the retrieval of
monitoring data through a metrics API. In Storm/Heron, the
monitoring component is called metrics manager. As Flink,
Spark, and Storm/Heron run within a JVM, their monitoring
components retrieve system metrics through Java libraries
like the Dropwizard Metrics API [10].

Figure 3 illustrates the performance monitoring in Flink.
Each monitored component contains an instance of a metric
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query service and a metric reporter. The metric query
service is used for the pull-based approach, while the metric
reporter exposes metrics in a push-based manner. In the
pull-based approach, the metrics fetcher periodically queries
and aggregates monitoring data from all components via the
metric query service. The aggregated data is visualized in a
web-fronted in the form of dashboards, thereby helping users
understand and debug the framework. The communication
regarding fetching metrics is asynchronous, which can result
in timeouts during the fetching process and outdated data.

In the push-based approach, the metric reporters collect
metrics from each node and transmit them without
aggregation to a specified destination such as an external
monitoring system or a database.

2.2.2 Metric Management

For metric management, Flink supports four different metric
types (based on the Dropwizards library [10]): Gauge,
Counter, Histogram, and Meter. Spark additionally supports
a Timer type. These metric types are specified as follows:

• Gauge measures a value that can arbitrarily increase
or decrease, like CPU utilization.

• Counter is a Gauge representing a long value that is
updated atomically. Counters can be incremented and
decremented.

• Histogram measures the statistical distribution of
values in a stream of data such as minimum, maximum,
mean, median, standard deviation, and different
percentiles.

• Meter measures the number of events in a unit of
time, e.g., requests per second. Statistics measured
using meters are, for example, mean rate or 15-minute
moving averages. In the context of an SPE, a meter
can be described as a sliding window with a given
aggregation function.

• Timer measures duration. Spark, for example, uses this
metric type to measure the processing time of messages.

Metrics are assigned to metric groups, i.e., named metric
containers. Metric groups are combined to create a nested
hierarchy based on group names. Each metric group can be
uniquely identified by its name and place in the hierarchy.
Metric groups enable the reporting and gathering of metrics
at different granularities, making metrics management
intuitive. Each group can contain different types of metrics,
e.g., Gauges, Counters, Histograms, Meters, or Timers.

In Flink, metrics belong conceptually to two different
groups which are specified by an attribute called scope. For
each metric, there exist a user-defined scope and a system-
provided scope. The user-defined scope is optional and

enables custom grouping. In contrast, the system-defined
scope is the top-level group in the hierarchy and contains
context information about the metric, e.g., in which task it
was registered or to what job that task belongs to. Table 1
shows an excerpt of two metric groups. The upper one
contains three metrics about the heap memory of the JVM,
which are all of type Gauge. The group at the bottom
contains two metrics regarding the network communication
via Netty [26]. NumBytesInLocal describes the total
number of bytes a task has read from a local source.
NumBytesInLocalPerSec represents the number of
bytes that a task is reading from a local source per second.

Scope Infix Metric Type
Job-/ Status. Heap.Used Gauge
TaskManager JVM.Memory Heap.Committed Gauge

Heap.Max Gauge
Task Shuffle. NumBytesInLocal Counter

Netty.Input NumBytesInLocalPerSec Meter

Table 1: Excerpt of a metric group hierarchy in Flink.

2.2.3 Integration with External Systems

In a cloud environment, there is the need to collect various
performance metrics from different running frameworks
such as the SPE, as well as from the operating system
and the storage layer. One arising requirement is thus
having a unified monitoring solution that can both ensure the
correctness of all running processes in the SPE and enable the
monitoring of the infrastructure. To that end, it is required
to extend the metric stack of the SPE to support custom
code and instrumentation. Flink realizes this with custom
reporters and rich functions, while Spark has custom listeners
and plugins. Flink provides reporters for sending metrics
to common systems such as InfluxDB and Prometheus. In
addition, users can implement custom reporting via inheriting
the metrics reporter interface. Rich functions are extensions
of user defined functions (UDFs) that grant access to runtime
information and state variables. In Spark, the listener
interface enables accessing the runtime by intercepting events
from the Spark scheduler. Plugins are external packages that
register additional custom-defined metrics and are executed
at the startup of the executors and the driver.

2.3 Summary

In summary, cloud-based monitoring solutions are mature
and widely adopted in industry. External monitoring systems
collect system and application metrics via monitoring
agents, which are independent processes running on every
node. Stream processing engines implement monitoring
internally to avoid crossing of system boundaries and enable
customizable gathering of internal performance metrics.
Despite the fact that SPEs and monitoring systems differ
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architecture- and functionality-wise, they rely on the same
key concepts to retrieve and transmit metrics. More precisely,
both systems retrieve metrics via push- or pull-based
approaches and transmit metrics based on given conditions
which are usually static time intervals, thresholds, or events.
Furthermore, they both aggregate metrics at the server or
master node. The monitoring approaches that are employed
by state-of-the-art SPEs are designed for cloud infrastructures.
However, IoT environments are significantly different. They
are geo-distributed, have a much larger scale, and involve
volatile low-end devices. To examine the suitability of current
solutions in these emerging environments, we conducted an
experimental evaluation that we present in the next section.

3 EXPERIMENTAL EVALUATION

Cloud-based monitoring is mature and widely adopted in
industry. In this section, we evaluate experimentally whether
it can also be applied efficiently in an IoT setting, despite
being designed for the cloud. To this end, we examine the
impact of the sampling period and the number of transmitted
metrics on CPU usage, memory utilization, and network
traffic. For our experiments, we chose the Prometheus
ecosystem as a representative solution, since it is widely
adopted in practice, simple to use, and well-documented (see
Section 3.1.2 for more details). The goal of our experiments
is to identify the current limitations that have to be addressed
to enable efficient monitoring for novel data management
systems for the IoT. To simulate an IoT topology, we use a
set of four Raspberry Pis (RPIs). We use one RPI as a server
for aggregating the monitoring data, and the remaining three
RPIs as monitored nodes. In the remaining section, we first
describe the setup of our experiments in Section 3.1, before
presenting our experimental findings in Section 3.2.

3.1 Experimental Setup

Next, we first specify the hardware of the RPIs in
Section 3.1.1 and then the software that we are running on
them in Section 3.1.2. Finally, we describe the experimental
design in Section 3.1.3.

3.1.1 Hardware

We use the RPI 4 Model B to create a small-scale, low-end
IoT cluster, i.e., a cluster with low CPU, memory, and
network bandwidth capacities. Each of our RPIs is equipped
with a 1.5 GHz 64-bit quad core ARM Cortex-A72
processor, on-board 802.11ac Wi-Fi, Bluetooth 5, full gigabit
Ethernet and 4GB of LPDDR4-3200 SDRAM. The RPIs
are connected over an Ethernet switch and communicate via
statically assigned IP addresses. For the RPI’s energy supply,
we use a central USB power hub.

3.1.2 Software

There is a large variety of available monitoring
solutions [18, 19, 22, 27]. For our experiments, we
decided to use Prometheus [22] as a monitoring system
together with the dashboard framework Grafana for the
visualization. Prometheus is broadly adopted in the industry
and thus has a large community, extensive documentation,
and a rich ecosystem of exporters that enable monitoring data
from various sources. For our experiments, we use the Node
Exporter, which gathers hardware metrics provided by the
operating system. The Node Exporter runs on all monitored
RPIs and exposes an HTTP endpoint that is queried by
Prometheus. Furthermore, each exporter consists of a set
of collectors that can be enabled on demand to provide the
respective monitoring information (e.g., a CPU or file system
collector). Grafana is a similarly well-established dashboard
framework that has many pre-configured dashboards to
display hardware monitoring data from Prometheus. We
use Grafana to simulate the additional load of an end-user
dashboard solution on both Prometheus and the RPI, but
we exclude the resource consumption of Grafana from our
measurements. To investigate to what extent an edge device
is capable of acting as a local monitoring aggregator, we use
one of the RPIs as the server for Prometheus and Grafana

3.1.3 Experimental Design

The goal of our experiments is to evaluate the impact
of different monitoring scenarios on the RPI cluster.
Specifically, we investigate the impact of the sampling
period at which new samples are queried from Node
Exporters and of the number of monitored metrics. We use
an idle Node Exporter process that has a network connection
to the server node as a baseline. The monitoring overhead is
then calculated by measuring the difference in the resource
consumption with respect to this baseline.
Metrics: In our experiments, we evaluate two different
categories of metrics. The first category contains standard
measurements for the CPU, memory, and network bandwidth
usage. We do not measure IO usage since the Node Exporter
does not use the file system. The second category consists
of two Prometheus-specific metrics. The scrape duration
describes the latency of a request that Prometheus sends to
the Node Exporter, i.e., the time that it takes to receive a new
value from a node at the server. The failure rate specifies
the fraction of scrape jobs that fail due to request timeouts
or other errors that occur when the devices are under load.
Measurements: We perform our measurements over a
five-minute time frame with a rate of 1 measurement/second.
We retrieved the hardware measurements using nmon and
the Prometheus-specific ones by querying the Prometheus
database. Since our measurements showed only little
variance over the five-minute time frame, we only show a
single measurement in each of our result figures.
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(a) Monitored Node

(b) Server Node

Figure 4: CPU, memory and network bandwidth consumption over different sampling periods (number of
monitored metrics = 591). Other free parameters are kept fixed at their default values.

3.2 Experimental Results

This section presents the results of two experiments: one
where we vary the sampling period, and one where we vary
the number of monitored metrics.

3.2.1 Sampling Period Experiments

In the first part of this experiment shown in Figure 4, we
varied the sampling period (x-axis) and analyzed the effect
on three metrics (y-axis): average CPU usage (left), 1 free
memory (middle), and network traffic (right). The top
of the figure shows the results for the server node and
the bottom shows the average results over all monitored
nodes. Regarding CPU usage, the results show an almost
exponential increase for both the server and monitored
nodes as the sampling period decreases. When looking at
the absolute values, we see a CPU consumption of more
than 20 percent for sampling periods less than 500 ms.
Considering that in this experiment the monitoring system
is the sole resource consumer, i.e., there is no other running

1We additionally investigated the CPU usage per core and confirmed an
even distribution of CPU load before considering the overall CPU usage.

computation, we have revealed that on low-end devices
such our RPIs, a sampling period smaller than 500 ms
leaves few resources for the actual processing. The memory
consumption does not vary significantly with the sampling
period and does not differ significantly from the baseline.
For the network consumption, we see a linear increase with
decreasing sampling period for the transmitting channel
on the monitored node and the receiving channel on the
server node, respectively. This is expected, as with a smaller
sampling period, more metrics are generated, which need
to be transmitted to the server node. 2

In the second part of this experiment shown in Figure 5,
we varied the sampling period (x-axis) and measured the
corresponding scrape duration (left) and failure rate (right),
which are displayed on the y-axis. In addition to the scenario
in which only Node Exporter is running on a monitored node
(red curve), we also measured the scrape duration and the
failure rate when the monitored node is under full CPU load
(black curve). The load has been artificially created via stress.
The results show a generally increasing scrape duration with

2Note that the linear increase is not depicted clearly in Figure 4 due to
the non-linear scale of the x-axis.
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Figure 5: Scrape duration and failure rate of scrape jobs over different sampling periods.

Figure 6: CPU, memory and network bandwidth consumption on a monitored node over different numbers of
monitored metrics (sampling period = 100 ms).

larger sampling periods. Full CPU load generally increases
the scrape duration by about 15 to 20 milliseconds. This
effect occurs due to the decreased CPU resources that the
monitored node devotes to the Node Exporter. At ca. 100 ms
the scrape duration for both the idle and full CPU load setup
starts decreasing, because the scrape jobs are starting to
fail. The scrape duration for both setups meets at 10 ms due
to the fact that almost 100% of the scrape jobs are failing
at that point. In these cases, the Node Exporter is unable
to process metrics within the requested sampling period,
and a connection timeout occurs. Consequently, no data
is sent back in the HTTP response making the processing
faster. Looking at the failure rates, we see that high CPU
load causes a large number of scrape jobs to fail for low
sampling periods. Since real-world applications are likely to
impose a considerable CPU load on the nodes, we validate
our previous conclusion that a sampling period of less than
500 ms is not feasible in such a setup.

In summary, the sampling period experiments have
shown that Prometheus cannot handle small sampling
periods efficiently. We identified that the CPU usage
increases exponentially and the network traffic linearly

with decreasing sampling periods. For an IoT topology
that usually consists of millions of low-end devices with
limited resources and bandwidth, this showcases that current
solutions are not applicable. To avoid a system overload, a
monitoring framework for the IoT should support efficient
management of varying sampling periods. Additionally,
we identified that Prometheus is not capable to collect and
transmit performance metrics in a reliable way when the
device has limited resources and is under heavy CPU load.
In all experiments that were performed in these conditions,
we were experiencing timeouts and lost packets. Such
behaviour occurs less frequently on cloud servers with
many resources and fast network connections, but becomes
especially problematic for an IoT data management systems
like NES that aims to offload work to edge devices.

3.2.2 Number of Metrics Experiment

In this experiment shown in Figure 6, we varied the number
of monitored metrics (x-axis) and analyzed the effect on three
metrics (y-axis): average CPU usage (left), free memory
(middle), and network traffic (right). The available interval
steps for the number of exposed metrics are implicitly defined
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Figure 7: Scrape duration and failure rate of scrape jobs over different numbers of monitored metrics (sampling
period = 100 ms).

by the number of metrics that each single collector exposes.
By default, Node Exporter exposes 591 metrics in our setup.
After measuring the number of metrics per collector, we use a
series of collectors that in total expose 46, 134, 309, 459, 591,
and 1268 metrics. The large gap between the two last steps is
caused by the systemd collector that exposes more than 600
metrics by itself. For this experiment, we fix the sampling
period to 100 ms. We chose a small sampling period to
emphasize the differences caused by the number of metrics.

Analyzing the results, we see that the CPU usage increases
linearly with the number of monitored metrics. We observe
a slightly higher increase in CPU usage in the last measuring
point, which occurs due to the additional overhead the
systemd collector is generating. All in all, the CPU usage
is, however, behaving as expected, since the system has to
invest more CPU resources when more metrics have to be
processed. The memory consumption of the Node Exporter
remains practically constant throughout the experiment,
which shows that, similarly to the first experiment, the
number of monitored metrics has no effect on the memory
consumption. The consumed network bandwidth increases
linearly but has a sharp drop at 1268 metrics. The right side
of Figure 7 shows that at this point the system has reached
its network limit regarding the number of monitored metrics
(x-axis) that are transmitted to the server. Consequently, the
failure rate (y-axis) jumps to almost 100 percent, which in
turn causes the Node Exporter to not send any monitoring
data in most of its HTTP responses. The scrape duration
(y-axis) on the left side of Figure 7 shows an expected linear
trend, which increases with the number of monitored metrics.

In summary, the experiments in this section have
revealed two things. First, Prometheus is unable to handle
high-demanding monitoring scenarios on low-end IoT
devices without using an unfeasible share of CPU resources.
Second, the tested monitoring solution with Prometheus
was error-prone. In a typical stream processing scenario
with edge devices, a monitoring framework needs to be

able to handle overloaded nodes. However, under these
circumstances, we either received no metrics at all or with
a significantly increased delay. This shows that Prometheus
cannot be efficiently used for monitoring IoT topologies.
We expect other cloud-based monitoring solutions to exhibit
similar behavior, since their architecture and functionality
are similar to Prometheus as we described in Section 2.

4 THE ROAD AHEAD: MONITORING OF DATA
MANAGEMENT SYSTEMS FOR THE IOT

The approaches presented in Section 2 can be seamlessly
implemented and integrated in cloud-based SPEs running
on JVMs. There exist many Java libraries that facilitate
the gathering of system and user metrics independently
from the underlying operating system and hardware. Data
management systems for the IoT like NES are, however,
implemented in C++ due to its efficiency and suitability for
low-end devices [32]. Additionally, topologies comprising
the cloud, fog, and edge are more complex than the purely
cloud-based master/worker architectures. They frequently
undergo changes and consist of many hierarchical levels
with different networks and permissions. As a result, not
all devices can be connected directly at all times.

More concretely, the following properties distinguish IoT
topologies from cloud-based ones:

1) Resource constrained environment: IoT devices
typically have limited bandwidth and resources.

2) Massive number of nodes: IoT topologies scale up
to many millions of nodes whereas cloud topologies have
hundreds to thousands of nodes.

3) Dynamic topology: IoT topologies might be exposed
to frequent changes, which occur due to the large amount
of volatile and moving devices.

4) Complex networks: Devices in IoT topologies are
often located in geo-distributed networks that encompass
different access and security standards.
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5) Diversity: IoT topologies usually comprise many
devices with varying hardware and operating systems.

6) Non-JVM-based: IoT data management systems
might not support JVMs.

Based on the above-mentioned properties and the
functional requirements for general monitoring systems for
the IoT proposed in [25], we draw a list of requirements that
are specifically tailored to an internal monitoring component
for a data management system for the IoT. Specifically,
we identify four categories of functional requirements that
an IoT data management system needs to satisfy to enable
monitoring in IoT topologies: 1) Performance Optimization
and Scalability, 2) Handling Uncertainties, 3) Permission
and Access Control and 4) Handling Heterogeneity. The first
category addresses the resource constrained environment and
massive number of nodes properties, the second category
addresses the dynamic topology property, the third one
the complex networks property, and the last category
addresses the properties diversity and non-JVM-based. In
the remainder of this section, we describe the functional
requirements for each of the identified categories.

4.1 Performance Optimization and Scalability

Data management systems for the IoT intend to distribute
computation to millions of nodes and run thousands of
queries in parallel [32]. In such a setting, the system requires
monitoring data of many nodes to enable, for example,
efficient optimization strategies and operator placement.
The first category provides therefore a set of functional
requirements that aim to reduce the amount of transmitted
metrics and to optimize the CPU utilization of monitoring,
thereby enabling efficient management of monitoring data.
Filtering of measured metrics: Metrics like CPU or
memory often change significantly after the occurrence of
certain events, e.g., a new operator placement. To avoid
the transmission of redundant or insignificant changes,
the monitored nodes have to provide threshold-based
filtering, thereby reducing the communication overhead for
monitoring data transmission and storage.
Adaptive sampling periods: Measurement intervals of
metrics for different applications should be determined
according to application-specific trade-offs. Small periods
negatively affect the performance of the system, while
large sampling periods diminish the accuracy of monitoring
information. Therefore, custom time periods ranging
anywhere from a few seconds to minutes, hours, or days need
to be supported to monitor IoT data management systems.
Adaptive aggregation of monitoring events: IoT
topologies consist of millions of nodes. Thus, metrics from
a monitored node often have to pass multiple hops until
they reach the final destination of the monitoring master.
Aggregations at different hierarchical levels (e.g., locally
or at intermediate levels) are required to avoid overhead

and enable summarized views on subsets of the topology.
Many existing monitoring systems already support metrics
aggregation [18, 19, 27]. These systems require, however,
to manually specify the aggregation points in the topology.
IoT topologies change frequently and consist of such a scale
that the aggregation points can not be maintained manually.
Consequently, the monitoring system needs to determine
automatically how and where to aggregate the metrics.
Adaptive CPU utilization control: Data streams change
over time and thus the monitoring solution needs to be
adapted accordingly, without affecting the performance
of other components [8]. For example, in cases where
the CPU utilization on a device is increased due to the
deployment of new operators, the monitoring system
needs to be able to reduce the overhead of gathering and
processing performance metrics by appropriately dividing
the processing resources between the components.
Learning from the past: A monitoring system for the IoT
has to be adaptive as discussed in the previous paragraphs.
Adaption strategies can be enabled by using historical
data, e.g., inference techniques like machine learning
can be utilized on historical data to avoid measuring and
transmitting metrics. Consequently, a monitoring system for
the IoT should be able to archive and retrieve monitoring data
in a long-term manner to enable smart adaption strategies.

4.2 Handling Uncertainties

The edge of the network is a highly dynamic environment
where the availability and location of devices change
frequently. For time-critical edge computing applications, it
is thus important that the monitoring solution can detect and
collect information about the rapidly changing environment.
To that end, the second category consists of functional
requirements to handle highly dynamic topologies.
Discovery of changes: Changes regarding availability or
geographical position are required for informing components
to induce respective up- or down-scaling actions, e.g.,
new optimization actions regarding operator placement.
Techniques of auto discovery and custom alerting are
possible solutions for satisfying this requirement [28].
Adaptive data traffic control: Monitoring the network
quality of connections in the edge can enable the beneficial
adaption of the network communication. For instance, in
situations where the network connections do not support
high bandwidth, the amount of transmitted metrics needs
to be reduced via decreasing the sampling rate or changing
the network communication protocols.
Handling of failures: In a dynamic IoT topology, there are
various kind of failures that can negatively affect the data
management system. For example, 1) network partitions
can prohibit the system from collecting accurate metrics,
2) back pressure can reduce the throughput and limit the
performance of the system, or 3) bugs in the system might
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lead to unexpected behavior that can terminate running
processing tasks. Therefore, the monitoring component
needs to handle outages, deal with missing metrics, and
track why and how problems occur in the system.

4.3 Permission and Access Control

Data management systems for the IoT are designed
to run thousands of queries by a multitude of users in
parallel. Users are located in different areas which differ in
network properties, security settings and permission rights.
Consequently, the third category describes the functional
requirements to enable monitoring in a multi-tenant
environment with different security standards.
Multi-tenant monitoring environment: The monitoring
system needs to have the ability of defining multiple
roles and views for various types of users with different
permissions to access monitoring data. Different tenants
should be able to measure parameters and gain access only
to the information that pertains to them.
Network accessibility: Specific types of traffic such as
Internet Control Message Protocol (ICMP) or Simple
Network Management Protocol (SNMP) packets are filtered
in private administrative domains due to firewalls or network
rules because of security concerns. In such cases, the
monitoring solution should automatically change its mode
of operation via different communication protocols or
alternative methods to collect metrics. For example, the
location of a device can be tracked either by querying its
geographical coordinates or via its IP address.

4.4 Handling Heterogeneity

An IoT data management system that supports real-time
processing in a unified fog-cloud environment needs to
operate independently from underlying cloud infrastructure
providers, operating systems, and hardware. In the last
category, we list the requirements to enable monitoring on
different cloud providers and heterogeneous devices.
Extensibility: IoT data management systems need to
support user-defined metrics. Therefore, it is necessary to
support the customizability of monitoring solutions such as
metric extension (i.e., incorporate and start measuring any
new particular metric), which allows covering conditions
particular to a specific component.
Support of different operating systems and devices:
Monitoring solutions operating in the edge should cover all
kinds of hardware virtualization and operating systems. For
example, one way to collect performance metrics in a Linux
environment is via cgroups, while in Windows with tools
like the Windows Management Instrumentation (WMI) or
the Windows assessment tool. Every operating system and
device provides different ways to gather monitoring data,
and a monitoring system for the IoT should be compatible
with a large variety of devices and operating systems.

Standardized communication: A monitoring system
exposes metrics about monitored entities. Therefore, it
should use standardized communication protocols to enable
efficient communication and compatibility between different
endpoints. A widespread solution to expose monitoring
metrics is, for example, via a RESTful API. For the IoT,
there also exist low-overhead standardized protocols, like
the Constrained Application Protocol (COAP) or IPv6 over
Low power Wireless Personal Area Network (6LoWPAN).

In summary, IoT topologies consist of heterogeneous
devices that form large and complex networks and undergo
frequent changes. To address these properties, we identified
four categories of functional requirements that are necessary
to enable monitoring for a data management system
for the IoT. These categories address the performance
limitations and scale of the IoT, the inherent uncertainties,
the multi-tenancy of the infrastructure, and the heterogeneity
of the environment.

5 CONCLUSION

This paper explores existing monitoring solutions with
respect to their applicability in a stream processing setting
for IoT environments that contain millions of low-end
devices. We described the architecture of SPE-external
monitoring frameworks and provided an overview of
SPE-internal monitoring components regarding three aspects:
metric gathering, metric management, and integration
with third-party systems. We identified that even though
current solutions provide sophisticated methods to make
monitoring easy-to-use and adaptive, they are tailored for
cloud infrastructures and are not sufficiently efficient for IoT
topologies with low-end devices.

We tested the monitoring system Prometheus and
identified bottlenecks and inefficiencies in an IoT cluster
with limited hardware resources. Our results indicate that
Prometheus cannot handle high-demanding monitoring
scenarios with fast sampling rates on edge computing
devices and cannot support a high number of monitored
metrics on those devices. In particular, with a decreasing
sampling period and an increasing number of monitored
metrics, the CPU usage quickly reached a level that is not
acceptable for an IoT monitoring system.

We conclude that novel monitoring solutions are required
to support the distribution, heterogeneity, volatility, and
complexity of data stream processing in large-scale IoT
environments. To that end, we identified four categories of
functional requirements that need to be satisfied to enable
monitoring of stream processing engines beyond the cloud.
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