
Governor: Operator Placement for a Unified Fog-Cloud
Environment

Ankit Chaudhary
TU Berlin

ankit.chaudhary@tu-berlin.de

Steffen Zeuch
DFKI GmbH, TU Berlin
steffen.zeuch@dfki.de

Volker Markl
DFKI GmbH, TU Berlin

volker.markl@tu-berlin.de

ABSTRACT
The processing of geo-distributed data streams is a key challenge
for many Internet of Things (IoT) applications. Cloud-based SPEs
process data centrally and thus require all data to be present in
the cloud before processing. However, this centralized approach
becomes a bottleneck for processing data from millions of geo-
distributed sensors on a large scale IoT infrastructure. A new
line of research extends the centralized cloud with decentralized
fog devices to mitigate this bottleneck. One major challenge for
an SPE in this unified fog-cloud environment is to fulfill user
requirements by placing operators on fog or cloud nodes.

In this demonstration, we introduce Governor, an operator
placement approach for a unified fog-cloud environment. Our
approach consists of the Governor placement process and Governor
policies (GPs). The Governor placement process utilizes heuristic-
based GPs to optimize operator placement for a user query. Using
GPs, administrators can control the operator placement process
to fulfill specific Service-Level-Agreement (SLA). We implement
Governor in the NebulaStream Platform (NES), a data and ap-
plication management system for the IoT. We showcase the im-
pact of GPs on operator placement for different example queries.
Our demonstration invites participants to simulate the opera-
tor placement of queries and discover their characteristics. This
demonstration represents a first step towards an efficient opera-
tor placement approach for upcoming IoT infrastructures with
millions of sensors and thousands of queries.

1 INTRODUCTION
Over the last decade, the adoption of IoT devices has increased
significantly [7]. Processing IoT data in real-time enables a wide
range of new opportunities for businesses (e.g., smart homes,
connected cars, health-care) [13]. Many IoT applications today
are implemented using a cloud-based infrastructure. To perform
the data processing, a continuous transfer of geo-distributed IoT
data to a centralized data-center is required. Data processing
frameworks such as Flink [2] and Spark [12] are designed for
cloud-based environments and support efficient data analytics
and virtually unlimited scaling. However, cloud-based processing
of geo-distributed IoT data presents challenges for real-time and
latency-sensitive applications. These challenges include high data
transmission costs, delayed data processing, and high demand
for cloud-resources [13].

Fog computing addresses these shortcomings by processing
data closer to the source devices [1]. In particular, fog computing
leverages intermediate compute nodes to perform data processing
and thus minimizes data transfer between source IoT devices and
cloud servers. However, in contrast to the robust and elastic cloud
resources, the fog consists of limited, unreliable, and low-end

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

heterogeneous nodes. On the one hand, the fog can apply in-
network processing to reduce large volumes of data. On the other
hand, the fog has to cope with unreliable nodes and intermittent
failures [11, 13].

The NebulaStream Platform provides data analytics capabili-
ties in a unified fog-cloud environment [13]. The proximity of
computing resources to IoT devices in the fog, combined with
nearly unlimited computing resources in the cloud, presents
novel opportunities for IoT data processing and holistic opti-
mizations. One major challenge in such an environment is the
placement of query operators on compute nodes with regards to
the unique infrastructure characteristics and specific SLA require-
ments. Recent work on operator placement in the cloud focuses
mainly on network and compute resource efficiency but does not
take the volatility and heterogeneity of the fog infrastructure
into account [5, 8, 10]. In contrast, approaches for unified fog-
cloud environments consider volatility and heterogeneity but
only optimize for a specific goal, e.g., network efficiency or fault-
tolerance [3, 4, 6]. Furthermore, current approaches do not allow
administrators to specify SLA objectives (e.g., high-throughput,
low resource consumption) for operator placement.

In this demonstration, we introduce Governor, a new fog-cloud
operator placement approach that allows specifying custom SLA
objectives. Our approach consists of a set of heuristic-based rules
called Governor policies and a two-phase Governor placement pro-
cess. Using GPs, we enable administrators to tune the Governor
placement process for specific SLAs. The two phases of the Gover-
nor placement process are the following. First, the path selection
phase identifies a set of paths between sensors, intermediate com-
pute nodes, and the cloud. Second, the operator assignment phase
assigns operators to the compute nodes residing on the identi-
fied paths. In this demonstration, we showcase our placement
approach and the impact of different GPs using five example
scenarios. Attendees of our demonstration can compare operator
placements of custom queries for different GPs. Overall, our ap-
proach allows administrators to guide operator placement using
GPs and finds effective operator mappings for large query plans
over millions of sensors. In summary, our contributions are as
follows:

(1) We introduce Governor for performing operator place-
ment in a unified fog-cloud environment.

(2) We present five Governor Policies for example scenarios.
(3) We present a user interface that allows attendees to study

the impact of different GPs on operator placement.
The rest of this paper is structured as follows. In Section 2, we

introduce our Governor approach. In Section 3, we present our
demonstration scenario and describe the overall system design.
We discuss related work in Section 4 and conclude in Section 5.

2 GOVERNOR
Governor consists of Governor Policies and the Governor place-
ment process. We introduce GPs in Section 2.1 and the Governor
placement process in Section 2.2. After that, we showcase the

Demonstration

Series ISSN: 2367-2005 631 10.5441/002/edbt.2020.81

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.81

C1 C2 C3

F6F5 F7

F3

F1

F4

F2

OP2

OP3

OP4

OP1

C1 C2 C3 C1 C2 C3

OP2

OP3

OP4

OP1

(a) (b) (c) (d)

Cloud

Fog

Gateway

Cloud Cloud

Query Operator Fog Node Cloud Node Unused NodeF/COP F C

F6F5 F7

F3

F1

F4

F2

Fog

F6F5 F7

F3

F1

F4

F2

Fog

GatewayGateway

Governor

Figure 1: Governor placement process.
application of the Governor approach using example scenarios
(see Section 2.3).

2.1 Governor Polices
Governor Policies are a fixed set of heuristic-based rules that
guide the operator placement of a query. For example, to place a
query with a SLA-objective high fault-tolerance SLA-objective, a
GP selects all available network paths between source and sink
nodes, and places replicated operators on different nodes along
the selected paths. In case of an operator failure, another replica
operator will take over the failed operator’s workload, thereby
achieving the fault-tolerance objective. Using GPs, the operator
placement process will optimize the query execution for a specific
SLA-objective. An administrator prepares the GP by selecting
rules from a predefined catalog, which is maintained and updated
by a domain expert. The rules are classified into two categories:
path selection and operator assignment. The path selection rules
guide the selection of a subset of all available paths. In contrast,
the operator assignment rules guide the placement of operators
on nodes on the selected paths. In general, a GP contains at
least one rule from each category. However, an administrator can
define several GPs, each aiming to optimize query placement for
a unique SLA-objective using its distinct set of rules. Additionally,
while different GPs can share individual rules, the combination
of rules within a GP is unique.

2.2 Governor Placement Process
In this section, we describe how the Governor placement process
performs the operator assignments while taking GPs into ac-
count. Figure 1 shows the steps necessary to place the operators
of a query on a physical infrastructure. First, NES transforms a
user query into a directed acyclic graph (DAG) that is composed
of query operators and directed links among them, as shown
in Figure 1(a). The query DAG Q is represented by Q = {O,L}
where O and L represent operators and directed links respec-
tively. In the background, NES maintains an infrastructure graph
containing compute nodes that are interconnected by network
links (see Figure 1(b)). The infrastructure graph G is represented
asG = {V ,E} where V and E represent vertices and edges respec-
tively. Second, NES provides the query DAG, the infrastructure
graph, and a GP to Governor for operator placement. Governor
uses its placement process to assign the DAG operators on the
infrastructure nodes while following the rules from GP.

The operator placement process consists of two phases: the
path selection phase and the operator assignment phase. In the
path selection phase, shown in Figure 1(c), Governor identifies
the path between sources (IoT device) and the sink (cloud servers)
node using the heuristics defined in the GP. The number of paths
that are selected in the path selection phase ranges from all paths
to just a specific path, and thus reduces the search space for the
operator assignment phase. The path selection phase is crucial for

Fog

Cloud

User Gateway

Figure 2: Infrastructure for a ride sharing services.

large-scale IoT infrastructures containing thousands of heteroge-
neous nodes and millions of data sources. We make use of depth
first search (DFS) algorithm for finding paths. The maximum
number of source nodes in G is given by total number of vertices
|V |. The worst-case runtime complexity for identifying paths
between |V | sources and sink node is represented by O(|V |3).

In the operator assignment phase, shown in Figure 1(d), Gov-
ernor performs the operator placement on nodes along the se-
lected paths. During the operator assignment phase, Governor
distinguishes between pinned and unpinned operators. Pinned
operators reside on a specific location, e.g., source operators on
IoT devices and sink operators on cloud servers. In contrast, un-
pinned operators can be placed on any node along the selected
paths (if resource constraints permit this). Common strategies
would place non-blocking operators (e.g., filter, source, sink) close
to the IoT devices and blocking operators with state (e.g., window,
aggregation, join) close to the cloud servers. For a query DAG Q
with |O | operators and |P | selected paths with average |N | nodes,
the worst-case runtime complexity of operator assignment phase
is given by O(|O | ∗ |N | ∗ |P |).

2.3 Governor in Action
In Figure 2, we show a representative IoT infrastructure for ride-
sharing services such as ShareNow1, WeShare2, or Coup3. Ve-
hicles with on-board computing units communicate with fog
computing devices and transmit the operational information
(e.g., location, user, or time information) to the fog infrastructure.
While data is flowing through the fog into the cloud, fog nodes
can apply processing. Users interact with the cloud-based sys-
tem using a mobile application for locating, renting, or accessing
various other services. Using this infrastructure, we present five
example application scenarios:

(1) Fast-response: Realtime tracking of vehicle fleet.
(2) Fail-safety: Billing at the end of a trip.
(3) Bursty-data: Monitor vehicle statistics during usage.
(4) Save-resource: Health checks on IoT infrastructure.
(5) Save-energy: Save energy on battery-operated vehicles.

The presented scenarios have different SLA requirements, which
guide their respective placement of operators. In Table 1, we
present five example GPs for these scenarios. The Low-Latency,
Fault-Tolerance, and High-Throughput GPs are focused primarily
on the performance of queries. In contrast, theMinimum Resource
Consumption andMinimum Energy Consumption GPs are focused
on the performance of the infrastructure nodes. In the following,
we use GPs from Table 1 and briefly discuss the placement process
for the five application scenarios.

Fast-response requires fast event processing and delivery
by performing early data computation and using low latency
network links. The Low-Latency GP from Table 1 satisfies this
SLA requirement. In the path selection phase, Governor selects
distinct paths with low link latencies between source and sink

1 www.sharenow.com 2 www.weshare.com 3 www.coup.com

632

Low-Latency Fault-Tolerance High-Throughput Minimum Resource
Consumption

Minimum Energy
Consumption

Path Selection
Phase

• Distinct paths with low
link latency

• All paths between
sources and sink

• Distinct paths with high
bandwidth capacity

• Common path between
sources and sink

• Common path between
sources and sink

Operator Assignment
Phase

• Non-blocking operators
closer to source
• Replicate operators
when possible

• Use shared nodes
among selected paths
• Replicate operators
when possible

• Non-blocking operators
closer to source
• Blocking operators closer
to sink

• Share intermediate operators
among different sources
• Avoid operator replication

• Non-blocking operators
closer to source
• Share intermediate operators
among different sources
• Avoid operator replication

Table 1: Five example Governor policies.

REST

Topology
Catalog

Monitoring
U

pd
at

e

Worker Node 1 Worker Node nWorker Node 2 . . .

User Requests

Dispatcher Governor
Fetch

Query

Update

Query Parser

Web Interface

Topology GraphLogical PlanExecution Plan
Logical

Plan
1

2

3 54

Central Coordinator

Figure 3: Demonstration system architecture.
nodes. In the operator assignment phase, Governor places all non-
blocking operators close to the source operators and replicates the
operators wherever possible to achieve high data parallelism [9].

Fail-safety requires events to be delivered irrespective of
intermittent network or node failures by using alternative nodes
or links for processing and data transfer. The Fault-Tolerance
GP from Table 1 satisfies this SLA. In the path selection phase,
Governor selects all possible paths between the sources and the
sink nodes. In the operator assignment phase, Governor places
operators on the nodes shared across multiple paths such that in
the event of a path failure, another network path can be used for
data delivery.

Bursty-data requires the query to handle a sudden burst of
events by transmitting data using a high bandwidth link. The
High-Throughput GP from Table 1 satisfies this SLA. In the path
selection phase, Governor selects distinct paths with high band-
width capacity between source and sink nodes. In the operator
assignment phase, Governor places all non-blocking operators
close to the source operator and all blocking operators close to
the sink operator.

Save-resource requires the compute node to save resources
by sharing query operators and preventing replications. The
Minimum Resource Consumption GP from Table 1 satisfies this
SLA. In the path selection phase, Governor selects a common
path between source and sink nodes. In the operator assignment
phase, Governor ensures a high degree of operator sharing among
multiple sources contributing to the query.

Save-energy requires the compute nodes to save power ei-
ther by reusing the existing query operators or by reducing the
amount of data transmitted over the network. The Minimum
Energy Consumption GP from Table 1 satisfies this SLA. Like
for Save-resource, Governor selects a common path between
source and sink nodes. However, in the operator assignment
phase, Governor tries to place non-blocking operators closer to
the source to reduce downstream data traffic and thus saving
energy for transmission.

Governor uses a greedy approach for the operator placement,
which can return a solution in a reasonable amount of time at
the cost of sub-optimal placement decisions. In the future work,
we will examine the response time-optimality trade-off in detail.
Although Governor uses one query plan as an input, this query

plan can be the outcome of a multi-query optimization process
and thus may contain operators from multiple queries.

3 DEMONSTRATION
In Section 3.1, we introduce the architecture of our demonstra-
tion. After that, we present the web interface and describe the
functions available for the attendees to explore in Section 3.2.

3.1 Demonstration System Architecture
In Figure 3, we present the interaction among the web interface,
the central coordinator, and the worker nodes. The web interface
submits queries and retrieves information from NES over a REST
interface, e.g., the DAG for currently deployed query or the infras-
tructure topology. The central coordinator node manages both
the query placement and the deployment process. The worker
nodes manage the execution of operators from different queries.
We refer the reader to relevant literature for a detailed design
overview of NES [13]. In this section, we will only cover aspects
that affect the operator placement process of NES.

Inside the coordinator node, the queries are first validated and
parsed into DAGs using the Query Parser 1 . After that, Gover-
nor receives the logical query plan and fetches the information
from the Topology Catalog 2 . The topology catalog maintains the
latest infrastructure graph, including information on resource
availability and the set of deployed query operators on individ-
ual infrastructure nodes. Based on this information, Governor 3
creates the execution plan, which contains the operator place-
ment information. Finally, the Dispatcher 4 receives the overall
execution plan and forwards it to the respective worker nodes.

In an asynchronous second feedback loop, Governor updates
the topology catalog with the operator placement information.
Furthermore, worker nodes send regular updates to the Monitor-
ing 5 system, which in turn updates the topology catalog.

3.2 Web Interface
Figure 4 shows the web interface that attendees can use to explore
operator placement with Governor. Attendees have to write their
queries into the text panel 1 to explore different functionalities
of the web interface. The central coordinator system from Fig-
ure 3 is responsible for parsing, validating, and returning the DAG
for the input query. The button-panel 2 on the web interface
presents various options for interacting with the components
of the demonstration system. First, attendees can click on the
Show Topology button to fetch the infrastructure graph represent-
ing the latest state of compute nodes and network connections
among them. The display panel 4 shows the returned infras-
tructure graph. Second, the button Show Query Plan triggers the
query parser component, which returns a DAG of interconnected
operators for the submitted user query in the text panel 1 . The
display panel 3 shows the query DAG. Third, the drop-down but-
ton Execution Plan presents a set of GPs for triggering Governor.
Attendees can choose between any of the available GPs shown

633

3

1

2

4 5

6

Figure 4: Demonstration system web interface.
in Table 1, i.e., Low-Latency, Fault-Tolerance, High-Throughput,
Low Energy Consumption, and Low Resource Consumption. The
display panel 5 will show the operator placement plan returned
by Governor. The operator placement plan contains pinned, un-
pinned, as well as system-generated operators (e.g., forward oper-
ators) and their corresponding mappings on infrastructure nodes.
Additionally, the time taken for the plan computation using the
selected GP is shown in the UI 6 .

Overall, attendees of our demonstration can explore the opera-
tor placement in a unified fog-cloud infrastructure. We will point
out different options and their impact on particular characteris-
tics. Using this demonstration, we present a first step towards an
operator placement designed for upcoming IoT infrastructures
with millions of sensors and thousands of queries.

4 RELATEDWORK
In this section, we categorize related work from different research
areas. One line of research covers operator placement approaches
for a centralized computing infrastructure. Huang et al. offer a
heuristic-based operator placement approach for optimizing with
latency and throughput [8]. Kafil et al. consider heterogeneity
within a distributed environment to find one optimum compute
node to place all operators together [10]. Chatzistergiou et al.
optimize the operator placement for inter-node network bottle-
necks by reducing the number of nodes required to running a
query [5]. In contrast, Governor allows a flexible and controlled
operator placement strategy by enabling administrators to specify
different optimization objectives within the same infrastructure.

Another line of research examines placement approaches for
a unified fog-cloud environment. The approach presented by
Veith et al. focuses mainly on minimizing total data processing la-
tency [6]. However, this approach does not consider the node and
link volatility within the fog as a factor that can significantly im-
pact query execution. Cardellini et al. present a multi-objective
operator placement approach [4]. However, their approach is
not optimized for computing operator placements for a large
scale IoT infrastructure. In contrast, Governor considers vari-
ous characteristics of the fog-cloud infrastructure, including the
high volatility that is commonly present in a fog infrastructure.
Furthermore, Governor’s two-phase approach using heuristics
reduces the computation time for operator placement.

Overall, none of the previous approaches support defining
flexible operator placement objectives. In contrast, Governor
allows the administrator to specify different optimization goals
using GPs for each query submission.

5 CONCLUSION
In this demonstration, we present Governor, a first step towards
operator placement on IoT infrastructures with millions of sen-
sors and thousands of queries. We demonstrate Governor’s ability
to accept custom Governor Policies with different optimization
objectives for operator placement. In addition, we present five
example policies and showcase their placement for five example
application scenarios. In our demonstration, we will present the
challenges as well as early solutions for operator placement in
the future IoT era.

6 ACKNOWLEDGEMENT
This work was funded by the German Ministry for Education
and Research as BIFOLD - Berlin Institute for the Foundations of
Learning and Data (ref. 01IS18025A and ref 01IS18037A).

REFERENCES
[1] Bonomi et al. 2012. Fog computing and its role in the internet of things. In

MCC. ACM.
[2] Carbone et al. 2015. Apache flink: Stream and batch processing in a single

engine. IEEE Computer Society TCDE 36, 4.
[3] Cardellini et al. 2016. Optimal operator placement for distributed stream

processing applications. In DEBS. ACM.
[4] Cardellini et al. 2017. Optimal operator replication and placement for dis-

tributed stream processing systems. SIGMETRICS 44, 4 (2017).
[5] Chatzistergiou et al. 2014. Fast heuristics for near-optimal task allocation in

data stream processing over clusters. In CIKM. ACM.
[6] da Silva Veith et al. 2018. Latency-aware placement of data stream analytics

on edge computing. In ICSOC. Springer.
[7] de Assuncao et al. 2018. Distributed data stream processing and edge comput-

ing: A survey on resource elasticity and future directions. Journal of Network
and Computer Applications 103 (2018).

[8] Huang et al. 2011. Operator placement with QoS constraints for distributed
stream processing. In CNSM. IEEE.

[9] Jaspal et al. 1993. Exploiting task and data parallelism on a multicomputer. In
ACM SIGPLAN Notices, Vol. 28. ACM.

[10] Kafil et al. 1998. Optimal task assignment in heterogeneous distributed com-
puting systems. IEEE concurrency 6, 3 (1998).

[11] O’Keeffe et al. 2018. Frontier: Resilient edge processing for the internet of
things. In VLDB.

[12] Zaharia et al. 2012. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In NSDI. USENIX Association.

[13] Zeuch et al. 2020. The NebulaStream Platform: Data and Application Manage-
ment for the Internet of Things. In CIDR.

634

	Governor: Operator Placement for a Unified Fog-Cloud EnvironmentAnkit Chaudhary, Steffen Zeuch, Volker Markl

