
Query CompilationWithout Regrets

PHILIPPM. GRULICH, Technische Universität Berlin, Germany
ALJOSCHA P. LEPPING, Technische Universität Berlin, Germany
DWI P. A. NUGROHO, Technische Universität Berlin, Germany
BONAVENTURADELMONTE∗,Observe Inc., USA
VARUN PANDEY, Technische Universität Berlin, Germany
STEFFEN ZEUCH, Technische Universität Berlin, Germany
VOLKERMARKL, Technische Universität Berlin, Germany and DFKI GmbH, Germany

Engineering high-performance query execution engines is a challenging task. Query compilation provides
excellent performance, but at the same time introduces significant systemcomplexity, as itmakes the engine hard
to build, debug, andmaintain. To overcome this complexity, we proposeNautilus, a framework that combines the
ease of use of query interpretation and the performance of query compilation.On the onehand,Nautilus provides
an interpretation-based operator interface that enables engineers to implement operators using imperative
C++ code to ensure a familiar developer experience. On the other hand, Nautilus mitigates the performance
drawbacks of interpretation by introducing a novel trace-based, multi-backend JIT compiler that translates
operators into efficient code. As a result, Nautilus bridges the gap between compilation and interpretation and
provides the best of both worlds, achieving high performance without sacrificing the productivity of engineers.

CCS Concepts: • Information systems→DBMS engine architectures.

Additional KeyWords and Phrases: query compilation, query execution, database engines

ACMReference Format:
Philipp M. Grulich, Aljoscha P. Lepping, Dwi P. A. Nugroho, Bonaventura Del Monte, Varun Pandey, Steffen
Zeuch, and Volker Markl. 2024. Query CompilationWithout Regrets. Proc. ACMManag. Data 2, 3 (SIGMOD),
Article 165 (June 2024), 28 pages. https://doi.org/10.1145/3654968

1 INTRODUCTION
Cloud vendors, like Snowflake [19], Amazon [4], or Databricks [6], build high-performance query
execution engines to elastically scale a variety of data processing workloads. The main engineering
challenge for these engines is to balance performance and productivity of the developers. On the
one hand, an engine has to provide high-performance query execution for a wide range of workloads
fromvarious end users [6]. To achieve this, system engineers have to develop efficient data processing
operators, which involve traditional relational operators as well as specialized operators for stream
∗Work was conducted while the author worked at the Technische Universität Berlin.

Authors’ addresses: Philipp M. Grulich, grulich@tu-berlin.de, Technische Universität Berlin, Berlin, Germany; Aljoscha
P. Lepping, aljoscha.p.lepping@tu-berlin.de, Technische Universität Berlin, Berlin, Germany; Dwi P. A. Nugroho,
d.nugroho@tu-berlin.de, Technische Universität Berlin, Berlin, Germany; Bonaventura Del Monte, ventura@observeinc.com,
Observe Inc., USA; Varun Pandey, varun.pandey@tu-berlin.de, Technische Universität Berlin, Berlin, Germany; Steffen
Zeuch, steffen.zeuch@tu-berlin.de, Technische Universität Berlin, Berlin, Germany; VolkerMarkl, volker.markl@tu-berlin.de,
Technische Universität Berlin, Berlin, Germany and DFKI GmbH, Berlin, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2836-6573/2024/6-ART165
https://doi.org/10.1145/3654968

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0001-9497-2895
HTTPS://ORCID.ORG/0009-0007-5035-6493
HTTPS://ORCID.ORG/0009-0000-5654-411X
HTTPS://ORCID.ORG/0000-0001-5361-7715
HTTPS://ORCID.ORG/0000-0002-1314-9061
HTTPS://ORCID.ORG/0000-0002-4082-7788
HTTPS://ORCID.ORG/0009-0009-0964-026X
https://doi.org/10.1145/3654968
https://orcid.org/0000-0001-9497-2895
https://orcid.org/0009-0007-5035-6493
https://orcid.org/0009-0007-5035-6493
https://orcid.org/0009-0000-5654-411X
https://orcid.org/0000-0001-5361-7715
https://orcid.org/0000-0002-1314-9061
https://orcid.org/0000-0002-4082-7788
https://orcid.org/0000-0002-4082-7788
https://orcid.org/0009-0009-0964-026X
https://doi.org/10.1145/3654968

165:2 PhilippM. Grulich et al.

Fig. 1. Overview of the Nautilus framework.

processing, or user-defined functions (UDFs) [30].On theotherhand, the enginemust bemaintainable
by a large number of engineers to ensure high productivity for the timely integration of new features.
To this end, theenginehas tobeeasy tomodify, test, anddebug [6].Consequently, enginebuildersneed
to compromise between performance and maintainability, depending on their specific requirements.

Over the last decade, vectorized query interpretation [9] and query compilation [55] have emerged
as the state-of-the-art architectures for high-performance query execution engines. Vectorized query
interpretation extends the traditional Volcano processing model [27] and passes vectors of records
between precompiled operators that can be developed in imperative code. Therefore, engineers can
extend and debug the engine in their well-known programming workflow using standard developed
tools and debuggers. In contrast, query compilation translates queries into code at runtime. This
enables the data processing engine to generate specialized machine code that reaches high execution
performance at the cost of an additional compilation-time overhead. To compile data processing
queries, research has proposed different specialized query compilation strategies. These approaches
either optimize for short-running queries [24, 39], target specific hardware [65], propose performance
optimizations [18, 50], or focus on particular workloads [16, 29, 30]. Even though query compilers
enable high performance, their development and maintenance is complex, and thus data processing
systems struggle with their integration [6].

Engineers of state-of-the-art query compilers face two key challenges: First, query compilers gen-
erate the implementation of operators only after query submission, i.e., at runtime. This introduces an
indirection between the implementation and the execution of operators, which makes compilation-
based engines hard to build anddebug [6, 63]. This is particularly problematic for query compilers that
use specialized compiler frameworks like LLVM as they require engineers to have a deep understand-
ingof compiler technology [41]. Second, the design space of a query compiler is very large, and there is
noapproach that is optimal for allworkloads [28]. Thus, engineersmust buildworkload-specificquery
compilers that balance compilation time, execution performance, and engineering effort [39]. From a
company perspective, it is difficult to hire and onboard qualified engineers that fullfil this highly spe-
cializedprofile [53, 63]. These challengesmotivated recent commercial datamanagement systems like
Photon [6] and FireBolt [63] to adopt the vectorized query interpretation in contrast to query compi-
lation to ensure quick prototyping, high engineer productivity, and consequently rapid development.

To address these challenges, we propose a novel way for systems to benefit from the advantages of
query compilation without sacrificing developer productivity. In particular, we propose Nautilus1, a

1We provide Nautilus as a stand-alone query compilation framework and use it as a foundation for our open-source data
processing system NebulaStream. Access the code at github.com/nebulastream/nautilus.

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

https://github.com/nebulastream/nautilus
https://nebula.stream/
https://github.com/nebulastream/nautilus

Query CompilationWithout Regrets 165:3

framework for developing data processing engines that bridges the gap between query interpretation
and query compilation. To this end, Nautilus combines an interpretation-based programming model
with a novel trace-based, just-in-time (JIT) compiler that provides multiple backends to translate
operators into efficient code. Figure 1 shows the threemain components ofNautilus. First, 1 Nautilus
provides a generic interface for implementing diverse data processing operators. The interface hides
the complexity of code generation and enables engineers to write imperative C++ code that is easy to
develop, debug, andmaintain. Second, 2 Nautilus’ JIT compiler traces imperative operators to derive
a unified intermediate representation, the Nautilus IR, and provides multiple execution backends
to produce efficient code. This enables Nautilus to specialize query execution towards particular
workload requirements, e.g.,minimizing startup latencyormaximizingexecutionperformance.Third,
3 Nautilus introduces a common interface between the executable operators and the host runtime
that can be used across all execution backends. This simplifies the implementation of operators and
enables engineers to reuse common data structures, e.g., hash-tables, lists, across operators. Our
evaluation shows that Nautilus reduces the complexity of compilation-based execution engines and
achieveshighperformance for relational-, streaming-, andUDF-basedworkloads.As a result,Nautilus
combines the ease of use and productivity of query interpretation with the flexibility and excellent
performance of state-of-the-art query compilers, enabling query compilation without regrets.
In summary, our contributions are as follows:
(1) We introduce Nautilus to unify the ease of use of query interpretation with the performance

of query compilation.
(2) We present a novel operator implementation interface that is easy to maintain, and debug.
(3) We propose a novel trace-based query compiler to translate imperative operators into efficient

machine code on different backends.
(4) WeuseNautilus’ as a foundation for our data processing systemNebulaStreamanddemonstrate

its high performance across diverse workloads.
The rest of this paper is structured as follows: First, we discuss the challenges of query compilation

in execution engines (see Section 2). Based on this, we introduceNautilus (see Section 3), our operator
implementation interface (see Section 4), and our novel trace-based, multi-backend JIT-compiler
(see Section 5). Then, we evaluate Nautilus across different workloads (see Section 6). Finally, we
discuss related work (see Section 8), and conclude (see Section 9).

2 THECURSEOFQUERYCOMPILATION
Over the last decade, many data processing systems applied query compilation to maximize query
execution performance [3, 4, 51, 55]. Even though query compilation iswidely adopted, it introduces a
high systemcomplexity anddecreases engineering productivity. The engineers atDatabricks recently
discussed the engineering challenges of their query compiler for SparkSQL [6]. They argue that with
a vectorized, interpretation-based architecture, it is easier to develop and scale the engine. Similarly,
several recently introduced commercial systems, such as Photon [6], Firebolt [63], and Velox [64] fol-
lowed interpretation-based architectures to reduce development costs and ensure the productivity of
their engineers. In particular, the following two challenges hinder the adoption of query compilation.

Challenges 1: Managing engineering complexity. Building and maintaining query execution
engines, like any other software artifact, requires developer time and costs. A survey on the software
industry reveals that 50% of the overall expenditure (1.25 trillion US dollars at the time) went towards
developing and debugging software [12]. Consequently, it is necessary to be frugal and minize
developement costs, as well as maximize developer productivity. Operators in interpretation-based
engines correspond to straightforward code fragments that are developers can comprehend and
debug without additional tools. Listing 1 illustrates the C++ code of a vectorized aggregation. In
contrast, query compilers use code generation frameworks such as LLVM [55] or build custom

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

165:4 PhilippM. Grulich et al.

Listing 1. C++ Example.

1 int64_t exec(int64_t* ptr, int64_t size){
2 int64_t sum = 0;
3 for (int64_t i = 0; i < size; i++) {
4 sum = sum + ptr[size];
5 }
6 return sum;
7 }

Table 1. Compilation Backends.

Throughput Latency Compl.

Programming Languages

JAVA-BC [1] ♦ ▼ ▲
C/C++ [7, 29, 31, 80] ▲▲ ▼▼ ▲
OpenCL/
CUDA [11, 25, 65]

▲▲ ▼▼ ▲

Compiler Frameworks

MLIR [36, 37] ▲▲ ▲ ▼
LLVM [50, 54, 57] ▲▲ ▲ ▼▼
WASM [32] ▲ ▲▲ ▼▼
ASM-JIT [24] ♦ ▲▲ ▼▼

Listing 2. LLVM Example.

1 define i64 @exec(i64 %0, ptr %1) {
2 br label %3
3 3:; preds = %9, %2
4 %4 = phi i64 [%17, %9], [0, %2]
5 %5 = phi i64 [%18, %9], [0, %2]
6 %6 = phi i64 [%10, %9], [%0, %2]
7 %7 = phi ptr [%13, %9], [%1, %2]
8 %8 = icmp slt i64 %5, %6
9 br i1 %8, label %9, label %19
10 9:; preds = %3
11 %10 = phi i64 [%6, %3]
12 %11 = phi i64 [%5, %3]
13 %12 = phi i64 [%4, %3]
14 %13 = phi ptr [%7, %3]
15 %14 = mul i64 %11, 8
16 %15 = getelementptr i8,
17 78 ptr %13, i64 %14

18 %16 = load i64, ptr %15, align 4
19 %17 = add i64 %12, %16
20 %18 = add i64 %11, 1
21 br label %3
22 19:; preds = %3
23 %20 = phi i64 [%4, %3]
24 ret i64 %20
25 }

compilers [24, 39] to generate code at runtime. Such code often resembles assembly and is highly
complex, see generated LLVM-IR in Listing 2. Although both representations are semantically equiv-
alent, understanding and debugging the generated code is cumbersome for most engineers [80].
Additionally, operating with existing tools (such as debuggers, stack trace tools etc.) at runtime is
challenging without manually adding instrumentation. All these additional overheads, makes query
compilation based engine hard to build, debug, and maintain. As a result, it becomes hard to find
engineers that have the required expertise [63] and increases the development costs as reported by
engineers at Databricks [6]. This is particularly problematic for academic projects like Mutable [32],
NoisePage [51], or Peleton [50], that can’t find contributors, as many students struggle with the
complexity of query compilation [53]. To overcome this challenge, a compilation-based engine has
to provide a framework that focuses on productivity and hides code generation complexity.
Challenges 2: Navigating a large design space.Modern data processing systems support an

increasingly diverse set of workloads and hardware. To address different workload requirements,
research introduced specialized query compilers, e. g., for short-running queries [39], stream pro-
cessing [29, 75], user-defined functions [16, 30], and heterogeneous hardware [65]. These compilers
generate code in different programming languages or use specialized compiler frameworks, to trade-
off between compilation time, execution performance, and developer productivity as illustrated in
Table 1. However, no architecture is suitable for all workloads. As a result, system engineers must
develop and maintain different query compilation backends to efficiently support diverse workloads.
For instance, Umbra provides multiple compilation backends to support short- and long-running
queries [39]. To navigate this design space a compilation-based engine should offer a framework
that easily allows to integrate different execution backends that optimize for specific workloads.

Both challenges increase the engineering effort and the cost of compilation-based query execution
engines. Besides commercial vendors, this also impacts academia as most research groups cannot
afford such engineering efforts [53]. As a result, the consensus has emerged that (i) compilation-based
engines can reach superior execution performance, but (ii) interpretation-based engines are much
easier to build and maintain. Consequently, getting the best of both worlds remains a desirable goal.
To this end, we propose Nautilus, our query compilation framework that bridges the gap between
query interpretation and compilation.

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

Query CompilationWithout Regrets 165:5

Fig. 2. Overview of query compilation Nautilus.

3 QUERYCOMPILATIONWITHNAUTILUS
In this section,wepresentNautilus,ournovelandextensible frameworkfor implementingcompilation-
based query execution engines. Nautilus addresses the previously outlined challenges and enables
engineers to utilize query compilation without compromising productivity. In particular, Nautilus
decouples the implementation of operators from the actual query execution by adhering to the
following three aspects: 1.Nautilus provides an imperative interface to implement data processing
operators that ensure developer productivity. 2.Nautilus provides a novel trace-based JIT compiler
that tailors query execution towards specific workload requirements. 3.Nautilus allows the seamless
integration with host data processing systems. This versatility enables engineers to employ Nautilus
either as a foundation for new execution engines or as a specialized accelerator for distinct workloads
in existing engines.

The remainder of this section provides an overview of Nautilus’ architecture (see Section 3.1) and
its extensibility (see Section 3.2). After that, we discuss Nautilus’ operator implementation interface
(see Section 4) and its JIT compiler in detail (see Section 5).

3.1 Architecture of Nautilus
In general, we assume that Nautilus is embedded into a host system either as part of the query
execution engine or as specialized accelerators. The host system provides an already optimized query
plan that can contain relational-, streaming-, or UDF-based operators. This allowsNautilus to support
queries for a wide range of workloads (C2). Depending on the specific workload and environment,
Nautilus’ select an execution strategy and creates an executable query plan (illustrated in Figure 2).
In the first step 1 , Nautilus translates the query plan into pipelines [55] of executable Nautilus

operators that provide the operator implementation. Next, Nautilus selects either an interpretation 2
or compilation 3 - based execution strategy to trade-off between debuggability and performance.
Finally 4 , Nautilus creates the executable query plan, which tightly integrates with the runtime
of the host system. In the following, we discuss these aspects in detail.

3.1.1 Operator Implementation. Developing operators for compilation-based data processing en-
gines is complex as discussed in Section 2. In particular, the indirection of generating operator
implementations at runtime makes development challenging (C1) and hinders the support for di-
verse workloads (C2). To facilitate ease of development, Nautilus provides an intuitive interface for
operator implementations that targets three design goals: First, it follows an interpretation-based
processing model that decouples individual operators from each other. Second, it allows engineers
to implement operators in generic imperative C++ code using lightweight abstractions that are easy
to test and debug. Third, it provides common data types and allows a tight integration with the
host system. Using this interface, engineers can implement operators without reasoning about code
generation, while it enables Nautilus to automatically generate efficient code at runtime.

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

165:6 PhilippM. Grulich et al.

3.1.2 Interpretation-basedQuery Execution. Amajor challenge of compilation-based execution en-
gines is the limited support for debugging the implementation of operators during development [40].
To tackle this challenge, Nautilus provides a dedicated interpretation-based execution strategy that
executes operators directly without involving any code generation. This strategy initializes pipelines
of operators and applies a traditional tuple-at-a-time model. At runtime, system engineers can use
debuggers like gdb to follow the execution path of records and inspect values as well as operator
state. In our experience, this is crucial to investigate logical errors in operator implementations and
improves developer productivity significantly.

3.1.3 Compilation-basedQuery Execution. In contrast to traditional query compilers, Nautilus’ exe-
cutable operators anddata structures are implemented ingeneric and imperativeC++code.Toachieve
highperformance,Nautilus introducesanovel trace-based JITcompilationapproach,which translates
operators to efficient code in three steps. Initially, Nautilus symbolically executes operator pipelines
and collects all executed operations in a trace object. Then, it converts the trace to a Nautilus IR frag-
ment. This IR allows for further optimizations as well as separates the implementation of operators
from the final code generation. In the final step, Nautilus selects one ofmultiple compilation backends
to generate executable code. These backends are tailored to specific workload characteristics, i.e.,
Nautilus provides low-latency backends to target short-running queries, high-performance backends
for long-running queries, and specialized backends to accelerated specific workloads like UDFs.

3.1.4 Runtime Integration. The integration between operators and the host system is a crucial factor
that affects themaintainability of compilation-based execution engines. For the general case, Nautilus
exposes pre-defined runtime functions to operators and transparently converts intermediate values
at the function boundary. While this method ensures a clear separation of concerns and increases
testability, it also introduces function calls in the generated code that may induce a performance cost.
Tomitigate this overhead, Nautilus provides two strategies. First, Nautilus’ JIT compiler can automat-
ically inline runtime function during code generation at the cost of an increasing compilation time.
Second, Nautilus’ operator implementation interface also supports the implementation of complex al-
gorithms anddata structures.While this requires additional engineering effort, it enables the compiler
to produce one unified code fragment that avoids any function calls to the runtime. This often enables
further compilationoptimizations and increases code efficiency.As a result,Nautilus allows engineers
to balance performance and engineering complexity and to focus on performance-critical areas.

3.2 Extensibility
The target workloads of data processing systems may broaden over the course of their lifetime to
cover new use cases. For example, Velox [64] was extended with support for ML-workloads and
Vector datatypes. As a result, system engineers have to adjust and extend the functionality of the data
processing engine (C2). To this end, Nautilus provides a flexible plugin interface that can be extended.
Plugins enables system engineers to extendNautiluswith new functionality on three levels. First, plu-
gins can provide new strategies for the instantiation of executable operators and query segmentation,
for instance, to use hybrid pipelining strategies [16, 18, 50]. Second, plugins can define new operators,
expressions, or data types. To this end,Nautilus provides handlers to intercept logical and arithmetical
operationsduringexecution.This enables aplugin for specializeddata types, suchas spatial data types,
to reuse expressions and operators. Third, plugins can extendNautilus’ JIT compiler and provide new
compiler backends to accelerate specificworkloads, likeUDFaccelerationusing specialized compilers.
In summary, plugins increase the extensibility Nautilus-based execution engines. They enable

the reuse of components, improve the testability of the resulting engine, and increase productivity.

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

Query CompilationWithout Regrets 165:7

Fig. 3. Execution of operators within a pipeline.

4 OPERATOR IMPLEMENTATION INTERFACE
Nautilusprovidesan intuitiveoperator implementation interface that relieves engineers fromthecom-
plexity of traditional compilation-based data processing engines. It follows an interpretation-based
processingmodel and allows engineers to implement operators in generic imperative C++ code using
lightweightabstractions that areeasy to test anddebug.Using this interface,we implementedcommon
relational data processing operators, e.g., projections, joins, aggregations, as well as logical and arith-
metical expressions. In this section,wepresent individual aspects of this interface anduse theoperator
implementationofTPC-HQ6as a runningexample. This queryfirst scans the input data (seeListing3),
performs a set of selections (see Listing 4), and finally aggregates an expression (see Listing 6).

4.1 Pipeline Evaluation
Nautilus segments query plans into a set of pipelines. During query execution, each pipeline re-
ceives data from predecessor pipelines and emits intermediate results to successor pipelines. Within
pipelines, Nautilus follows a push-based execution model [55] and sends data from one operator
to another via function calls (illustrated in Figure 3). In contrast to the pull model of traditional
interpretation-based engines [27], the push model aligns the control- and data-flow between op-
erators. Both follow the same direction, i.e., from the initial Scan towards the most downstream
operator. This simplifies the implementation and debugging of individual operators (C1).

For the implementation of operators, Nautilus defines an intuitive interface, similar to the Volcano
model [27]. Operators may implement setup(), teardown(), open(), and close() to specify their
processing logic. Eachmethodencapsulates a specific step in the execution lifecycle of anoperator and
helps tokeep the implementationmaintainable.Setup()andteardown()arecalledonceperoperator
and initialize/clear global operator state, for example the hash-table in a grouped aggregation. Open()
and close() are invoked for each buffer of data and allow operators to maintain local states, for
instance, an emit operator allocates an output buffer to materialize results. Furthermore, the open()
function of a scan operator iterates over the input buffer. It extracts individual tuples that they pass
to its children, see Listing 3. These children implement the execute() function to process individual
tuples. For example, the selection inListing4evaluates anexpressiononeach input tuple.Additionally,
operators receive a reference to the RuntimeContext. This context maintains the operator state and
provides access to the runtime system to allocate data structures and coordinate processing across
threads.As a result,Nautilus’ combinationof a push-basedprocessingmodel and an intuitive operator
interface decouples operators, simplifies their implementation, and improves testability (C1).

4.2 Imperative Operator Implementation
For the implementation of individual operators, Nautilus provides a lightweight C++ interface that
focuses on simplicity and expressiveness (C1). Operators can be entirely implemented in generic,
imperative C++ code. Thus, engineers are relieved from the complexity of code generation and can
express data processing logic using common data types, function calls, and control-flow statements,
e.g., if, for, or while. For example, the Scan operator uses a simple for loop that iterates over the
content of a data buffer and uses virtual function calls to operate on the input buffer (see Line 7 in

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

165:8 PhilippM. Grulich et al.

Listing 3. Scan.

1 class Scan : public Operator {
2 void open(RuntimeCtx& ctx, Buffer& tb){
3 // calls open on all child operators
4 child->open(ctx, tb);
5 // iterates over tuples in buffer tb
6 auto size = tb.getNumTuples();
7 for (Value<> i = 0; i < size; i++){
8 // reads a record from the buffer and
9 // passes it to the child operator
10 auto tuple = tb.read(i);
11 child->execute(ctx, tuple);
12 }
13 }}

Listing 4. Selection.

1 class Selection : public ExecutableOp{
2 void execute (RuntimeCtx& ctx, Tuple& t){
3 // calls child operator if
4 // expression is true
5 if (expression->execute(t))
6 child->execute(ctx, t);
7 }};
8

9 class LessThan : public Expression{
10 Value execute(Tuple& t){
11 auto leftValue = leftExp->execute(t);
12 auto rightValue = rightExp->execute(t);
13 return leftValue < rightValue;
14 }};

Listing 5. Aggregation.

1 class Aggregation : public ExecutableOp {
2 void execute(RuntimeCtx& ctx, Tuple& t){
3 AggState* state = ctx.opState(this);
4 // executes all aggregation functions
5 for (auto i = 0; i < aggs.size(); i++){
6 auto value = aggs[i].lift(t);
7 aggs[i]->lift(state->agg[i], value);
8 }
9 }
10 };

Listing 6. Sum Function.

1 class Sum : public Aggregation{
2 Value lift(Tuple& t){
3 return inputExp->execute(t);
4 }
5 void update(State* state, Value& v){
6 state->sum += v;
7 }
8 Value lower(State* state){
9 return state->sum;
10 }};

Listing 3). To express data processing operations, Nautilus provides three core abstractions, i. e.,
TupleBuffers, Tuples, and Values.

TupleBuffers represent chunks of memory that store data according to a specific column or
row-oriented data layout and provide methods to read and write tuples at particular positions.

Tuples represent individual data entries as record types and define a collection of field names and
associated values. Operators receive data as tuples and read/write values by their field names.

Values represent data elements of a particular type and can be part of a Tuple or the result of an
operation, e.g., the evaluation of the LessThanExpression in Listing 4. As Values contain a concrete
data element, system engineers can directly inspect their content at runtime in a debugger like gdb.
Values can either be primitive types, e.g., Int8, Double, Ptr, collection types, e.g., Array<Int64>,
or composed types, e.g., Point. All Primitive value types directly map to an associated C++ type,
Value<Int8>→int8_t andbehave semantically the same.Nautilus uses operator overloading to pro-
vide logical and arithmetical operations between Values. Thus, engineers can use Values similarly
to standard C++ data types. For example, the LessThanExpression in Listing 4 Line 13 evaluates
< on its inputs and returns the result as a Value.

These abstractions decouple the implementation of operators from the physical data represen-
tation, which has multiple benefits that improve the maintainability of an engine: First, Nautilus’
operators only receive Tuples, which are independent of the data layout of a TupleBuffer. Thus, en-
gineers can add different physical data layouts without adjusting the implementation of all operators.
Second, Values can be used to implement complex data types that combine multiple Values and
provide specialized functions. For instance, Nautilus’ Text type maintains the text length as well as a
data pointer internally and provides common text manipulation functions. Third, these abstractions
enable engineers to split complex operators into individual components, i.e., sub-operators [44]. One

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

Query CompilationWithout Regrets 165:9

Listing 7. Hash Join Probe.

1 class JoinProbe : public ExecutableOp{
2 void execute(RuntimeCtx ctx, Tuple& t){
3 // derive key values
4 std::vector<Value<>> keys;
5 for (const auto& exp : keyExpressions) {
6 keys.emplace_back(exp->execute(t));
7 }
8 // calculate hash
9 auto hashVal = hash(keys);
10 // load reference of hash map.
11 HashMap* map = ctx.opState(this);
12 // lookup the key in the hashmap
13 auto entry = map.findOne(hashVal, keys);
14 // check if join partner was found
15 if (entry != nullptr) {
16 // Load values from probe side and
17 // store them in result record.
18 for (auto i = 0; i < fields; i++) {
19 record.write(fieldName[i], entry[i]);
20 }
21 child->execute(ctx, record);
22 }
23 }

Listing 8. Map Interface.

1 class ChainedHashMap {
2 Entry findOne(Value<UInt64> hash,
3 vector<Value> keys){
4 // call runtime function to find chain
5 auto e = FuctionCall<>(findChain, hash);
6 // iterate chain and search for entry
7 for (; e != nullptr; e = e.next){
8 if (compareKeys(e, keys)) {
9 break;
10 }
11 }
12 return entry;
13 }
14 Entry findOrCreate(Value<UInt64> hash,
15 vector<Value> keys,
16 function<> onInsert){}
17 ...
18 };

example is the Aggregation operator in Listing 5. It maintains a global state in the RuntimeContext
and passes each tuple to a set of aggregation functions in Line 6. All aggregation functions implement
the same generic interface as proposed by Tangwongsan et al. [74], and provide three functions
lift(), combine() and lower() see Listing 6. Lift transforms a tuple to a partial aggregate. Combine
computes the combined aggregate from partial aggregates and updates the current aggregation state.
Lower transforms a partial aggregate to a final aggregate. This allows for the reuse of aggregation
function implementation across various physical operators, such as keyed and global aggregation
for batch data and window aggregations in stream processing.

4.3 Integrating Data Structures
In addition to the implementation of individual processing logic, the integration between operators
and complex data structures is crucial for the architecture of an engine. To this end, Nautilus provides
common data structures, like Lists and HashTables, which can be used across different physical
operators. At the core, all these data structures are implemented by a runtime component on the
one side and a Nautilus interface on the other side. The runtime component is pre-compiled, while
the interface creates function calls to invoke specific functions on the data structure. This design
allows engineers to balance performance and engineering complexity. For performance-critical code,
they can implement parts of the data structure in Nautilus, which enables the compiler to generate
specialized code at runtime. For all other functions, they can directly call into the runtime code and
benefit from the increased debuggability and testability of pre-compiled code. To illustrate this, let
us consider the HashJoinProbe operator in Listing 7. For each input tuple, it accesses entries in the
Hashmap from Listing 8 to identify join partners. First, the operator selects key values (Lines 4-7) and
calculates the hash (Line 9). Subsequently, it invokes findOne(hash, keyValues) on the hash map
data structure. Listing 8 shows the implementation of this function using a simple chained hash map.
Initially, it carries out a function call in the runtime to locate the chain corresponding to the specific
hash value (findChain()). Then, it iterates through all entries in the chain, comparing their keys. If

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

165:10 PhilippM. Grulich et al.

Select R1.f1
From R1
Where R1.f2 = 42

(a) ExampleQuery.

void execute(ctx, iBuffer){
rBuffer = ctx.allocateBuffer();
j = 0;
nrTuples = iBuffer.getNumTuples();
for (i = 0; i < nrTuples; i++){
record = iBuffer.read(i);
f1 = record['f1'];
f2 = record['f2'];
if(f1 == 42){
rBuffer[j].write(f2);
rIndex++;

}
}
rBuffer.setNumTuples(j);
ctx.emitBuffer(rBuffer);

}

(b) Pseudo-code of fused pipeline. (c) Trace of pipeline.

Fig. 4. Illustration of the intermediate trace (c) for an example query (a). The query performs a scan, selection,
and an emit operator, which execute the set of operations on Value objects illustrated in the pseudo-code
of the fused pipeline (b). The resulting IR is shown in Figure 5.

a matching entry is found, it returns to the HashJoinProbe operator. During compilation, Nautilus
generates a single code fragment for both the HashJoinProbe operator and the findOne function.
Only the implementation of findChain() is pre-compiled and linked.

Since the Hashmap is defined through a generic interface, its concrete implementation is decoupled
from individual operators.

5 TRACE-BASED JUST-IN-TIMECOMPILATION
Nautilus operators are implemented in generic and imperative C++ code to ensure high developer
experience and provide no code-generation logic. To translate operators to efficient code, Nautilus
introduces trace-based JIT compilation for data processing queries.
The main idea of a tracing JIT compiler is to dynamically optimize hot code paths during the

execution of a program [5]. To this end, it first executes a program in an interpreter and records
all executed instructions (the so-called trace). If the same trace was executed multiple times, e.g.,
because it traces a loop, the compiler translates the trace to machine code. In this case, the generated
code only covers the hot code path of the original program. Today, this technique is the foundation
of many mature JIT compilers like PyPy [8] for Python and TraceMonkey [26] for JavaScript.
In contrast to these general-purpose compilers, Nautilus operates on operator pipelines, which

always contain a tight loop over some data, i.e., a scan and a set of operators that process individual
records. As the shape of pipelines and the set of operators is restricted, we can eliminate the need
for the initial interpretation to detect hot-code paths. Instead, Nautilus uses symbolic execution [10]
to trace all possible execution paths through an operator pipeline. This enables to translate operator
pipelines to efficient code in three steps: 1) Nautilus uses a linear algorithm to record a trace of all
the instructions an operator pipeline executes. 2) Nautilus translates the trace to its intermediate
representation, i.e., the Nautilus IR. 3) Nautilus generates efficient machine code using specialized
compilation backends. This enables Nautilus to generate efficient code from imperative operators
and to balance compilation time and execution performance.
In the following, we discuss tracing, our Nautilus IR, and the compilation backends in detail.

Figure 4 illustrates a running example of the individual steps of Nautilus’ trace-based JIT compiler.
From the initial query (a) Nautilus creates an executable query plan that fuses individual operators
to data-centric pipelines (b). During JIT compilation, Nautilus executes the pipeline symbolically,
creates the trace (c), and converts it to a Nautilus IR fragment (see Figure 5).

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

Query CompilationWithout Regrets 165:11

Algorithm 1 Trace Pipeline
1: visited tagsΘ←{}
2: execution paths 𝐸←{[]}
3: while 𝐸≠ ∅ do
4: 𝜖←dequeue(𝐸)
5: Execute pipeline with 𝜖
6: endwhile

Algorithm 2 Trace Operation
1: if 𝑜𝑝𝑡𝑎𝑔 ∈𝜖 then
2: 𝑜𝑝 executed in same execution→ handle loop
3: else if 𝑜𝑝 cause control-flow split then
4: if 𝑜𝑝 was executed the first time (𝑜𝑝𝑡𝑎𝑔 ∉Θ) then
5: 𝑎𝑝𝑝𝑒𝑛𝑑 (𝐸,𝜖)
6: 𝑟𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙𝑢𝑒←𝑡𝑟𝑢𝑒

7: else if 𝑜𝑝 was executed the second time then
8: 𝑟𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙𝑢𝑒← 𝑓 𝑎𝑙𝑠𝑒

9: else
10: terminate execution of 𝜖
11: end if
12: end if
13: 𝑎𝑝𝑝𝑒𝑛𝑑 (𝜖,𝑜𝑝)
14: 𝑎𝑝𝑝𝑒𝑛𝑑 (Θ,𝑜𝑝)

5.1 Tracing Data-ProcessingQueries
Inorder toenable the tracingofdataprocessingqueries,Nautilus follows threekeyobservations:1)Op-
eratorswithin aqueryare constant anddonot changeduringexecution. 2)The targets of functioncalls
between operators and the host runtime are constant. 3) Operations that do not depend on any input
data, represented by Value objects, can not change during query execution and are constant. This al-
lowsus todifferentiate betweenoperations that are runtime constant and runtimedynamic during trac-
ing. If an operation involvesValueobjects it becomes runtime dynamic. In anyother casewe assume it
to be runtime constant. For example, the scan in Figure 4 accesses a constant number of fields (f1 and
f2) foreach tuple,whereas theactualvaluesof the individual attributesareonlydeterminedat runtime,
i.e., theyare runtimedynamic. This distinctionenablesNautilus to efficiently trace the implementation
of operators. During tracing, Nautilus follows Algorithm 1 and 2 and executes pipelines symbolically
to record all runtime dynamic operations that involve Value objects in a lightweight trace object.
Symbolic tracing. To derive the trace of an operator pipeline, Nautilus’s tracing algorithm exe-

cutes pipelines multiple times using dummy data2. In each execution, it intercepts all operations that
involve Value objects and records them in the trace, e.g., the expression f1 == 42 in Line 9 results in
an EQUALS instruction in the trace. These instructions capture references to input and result Values
as well as unique tags to identify if the same operation was executed multiple times, e.g., as part
of a loop in the scan operator. As the trace captures only the operations and their dependencies, the
actual data values do not impact the trace and are not recorded.

Acritical requirement for tracing is to capture all potential executionpathsduringquery evaluation.
For instance, in our running example, the trace has to contain both outcomes and the resulting control
flow of the if statement in the selection operator. To this end, Algorithm 1 evaluates the pipeline
till all execution paths have been visited. Itmaintains a set of operation tagsΘ and a queue of in-flight
execution paths 𝐸. Each execution path 𝜖 ∈ 𝐸 captures a unique sequence of operations that have
been executed during query evaluation. Till all execution paths have been visited (𝐸≠∅), Nautilus
continuous to evaluate the pipeline. For each traced operation, Algorithm 2 checks if the operation
is part of a loop or if it causes a control-flow split, e.g., by a if statements. Control-flow splits require
another pipeline evaluation such that Nautilus can also trace the other control-flow branch. To this
end, Nautilus checks if the operationwas executed before (𝑜𝑝𝑡𝑎𝑔 ∈Θ). If it is executed for the first time,
it appends the current execution path𝜖 to the set of in flight executions𝐸 and continues evaluating the
true case. If it visits the split for the second time, it evaluates thefalse case in contrast. If it revisits the
same control-flow split, Nautilus terminates the pipeline evaluation as both paths are already part of

2Tracing only collects the operations that are executed on dynamic data values. Thus, Nautilus executed the pipeline using
"dummy" null values during symbolic tracings.

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

165:12 PhilippM. Grulich et al.

Fig. 5. Illustration of the Nautilus IR for the example query and trace from Figure 4.

the trace.Asaresult, the tracingalgorithmrequiresO(2𝑛) iterations, respectivelypipelineevaluations,
in the worst case to evaluate all execution paths for a pipeline with 𝑛 control-flow splits. Thus, even
a complex pipeline with multiple nested operators requires only a small number of iterations.

In our running example, Nautilus traces the operation of the scan, select, emit operators as part
of the same pipeline. As the function calls between operators are constant, tracing automatically
fuses the operators, which results in the code illustrated in Figure 4 b. For each executed operation,
Nautilus adds an instruction to the trace (see Figure 4 c). Both thescan andselect operator introduce
a control-flow split. In the first iteration, Nautilus enters the loop body of the scan, evaluates the
true case of the selection, and exits the loop as it executes the loop header (i < nrTuples) for the
second time. Consequently, Nautilus only requires a second iteration to evaluate the false case of
the selection and can terminate tracing early. The resulting trace covers all visited execution paths
through the query and represents control flow via branches and basic blocks.

5.2 Nautilus IR
For each trace Nautilus generates a Nautilus IR fragment. The Nautilus IR is our unified intermediate
representation to decouple the implementation of operators from a specific compilation backend.
Nautilus IR focuses on three aspects to simplify the implementation of compilation backends: 1) It
is agnostic to specific operators and compilation backends. 2) It focuses on a small set of build-in
operations and data types to simplify the backend code. 3) It supports transformations to enable
optimizations independent of a backend. Thus, Nautilus IR balances compactness and expressiveness.

Nautilus IR follows static single-assignment (SSA) form and differentiates between functions, basic
blocks, and operations (see IR in Figure 5). Functions usually correspond to operator pipelines and
contain a sequence of basic blocks representing the control flow (illustrated with red arrows). Each
basic block receives block arguments, defines a sequence of dataflow operations, and terminates with
a control-flow operation. Operationsmay depend on input operations and produce at most one result
value of a primitive type (illustrated with blue arrows). To this end, Nautilus IR provides common
data flow operations, i.e., logical and arithmetical expressions, function calls, load, and stores, as well
as control-flow operations for jumps and if conditions. To pass values between basic blocks, each
block can define a set of block arguments [48]. In contrast to traditional SSA 𝜙 nodes, this models
dependencies between values and operations explicitly and simplifies optimizations.

The IR for our running example comprises in six basic blocks (see Figure 5).𝐵𝑙𝑜𝑐𝑘 0 initializes local
variables for the scan and emit operators. 𝐵𝑙𝑜𝑐𝑘 2 and 𝐵𝑙𝑜𝑐𝑘 4 are part of the scan and contain the
loop head (i < nrTuples) and latch (i++), which has a backedge to the loop head. 𝐵𝑙𝑜𝑐𝑘 3 loads the
record fields (f1, f2), and evaluated the selection. If the predicate is true, the execution invokes
𝐵𝑙𝑜𝑐𝑘 3 and stores f2. If the scan terminates, the loop header invokes 𝐵𝑙𝑜𝑐𝑘 5, which is the loop exit
block and emits the result buffer.

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

Query CompilationWithout Regrets 165:13

Table 2. Comparison of Nautilus’ compilation backends.
(▲indicates good, ♦indicates medium, ▼indicates low)

Throughput Latency Complexity

Low Latency Backend

Operator Interpreter ▼▼ ▲▲ /
Byte Code Interpreter ▼ ▲ 1200LOC
Flounder ♦ ▲ 595LOC
MIR ▲ ▲ 733LOC

High Performance Backend

MLIR ▲▲ ♦ 1132LOC
C++ ▲▲ ▼ 495LOC

Specialized Backend

UDF Acceleration ▲ ♦ 634LOC

In general, Nautilus IR represents an intermediate step in the compilation process and decouples
the operator implementation and a specific compiler backend. This enables Nautilus to general-
ize optimizations across different compiler backends, i.e., to detect loop patterns or to perform
constant-folding.

5.3 Compilation Backends
Previous query compilation approaches proposed different intermediate representations and com-
pilation backends to optimize for specific workloads, e.g., short-running batch queries, long-running
stream processing queries, or the acceleration of UDFs (C2). To this end, theymade specific trade-offs
between the throughput of the generated code, compilation latency, and ease of use.

In contrast, Nautilus leverages its backend-independent IR to specialize query execution towards
the requirements of specific workloads at runtime. To implement a compilation backend Nautilus
provides a generic interface for engineers. Each backend receives Nautilus IR fragments of operator
pipelines and returns executable code. The simplicity of theNautilus IR facilitates the implementation
of individual backends. As the backends only translate Nautilus IR instructions to one specific code-
gerneration target they consist of relatively few code (couple of hundreds lines) with low complexity.
Nautilus provides three types of backends with different performance characteristics and code

complexity, illustrated in Table 2: low-latency backends, which minimize compilation time for short-
running workloads; high-performance backends, which maximize throughput for long-running
workloads; and specialized backends, which accelerate specific workloads, e.g., the execution of UDFs.

Each Nautilus backend represents a specific spot in the design space of a query compiler and has
unique performance characteristics, i.e., favoring throughput or latency. This flexibility highlights
the versatility of Nautilus’ compilation approach and enables the comparison of established query
compilation approaches from literature and to propose new ones. Currently, Nautilus uses simple
heuristics to choose between the backends, e.g., data set size or the presence of UDFs. In the future,
we plan to leverage runtime adaptivity in Nautilus to select the optimal execution strategy [43]. In
the remainder of this section, we discuss the individual backends in detail.

5.3.1 Low-Latency Backends. The compilation latency of a query compiler significantly impacts the
execution time of short-running queries [43]. To address this issue, Nautilus provides four backends
with different low-latency characteristics: a operator interpreter, a byte code interpreter, Flounder [24],
andMIR [49]. The operator interpreter directly executes Nautilus operators without any tracing, IR
generation, or compilation. Thus, it induces no compilation latency ▲▲, but reaches only a very low

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

165:14 PhilippM. Grulich et al.

throughput ▼▼. It is used during development to simplify the debugging of logic errors in operators.
The byte code interpreter, on the other hand, translates the Nautilus IR to a set byte codes as proposed
byKohn et al. [43].During query execution, it invokes pre-compiled functions for each byte code. This
makes it optimal for embedded environments that often allownewcode generation at runtime.At run-
time, it reaches a higher throughput than the operator interpreter▼ and only introduces a very low la-
tency for the byte code generation▲. In contrast, the Flounder [24] backend translates ourNautilus IR
directly intomachine code using AsmJit [42]. In particular, Flounder is a specialized compiler for data
processing workloads and provides a thin abstraction over x64 assembly that performs no additional
compiler optimization. This allows Flounder to generate machine code♦with negligible compilation
times ▲. However, Flounder currently only support x64 platforms and generating machine code for
different architectures can require significant engineering effort [28]. Finally, the MIR [49] backend
translates ourNautilus IR to theMIR-IR.MIR is a general purpure JIT compiler similar to LLVM, focus-
ing on low compilation times. It was initially developed as a backend for Ruby and provides common
compiler optimizations, e. g., dead code elimination, instruction combination, or register allocation. In
contrast to Flounder, MIR generates more efficient machine code▲with similar compilation times▲.

In summary, our low-latency backends offer trade-offs between compilation time and throughput,
enabling Nautilus to support short-running queries efficiently.

5.3.2 High-Performance Backends. For long-running queries that process large data sets or streams,
it is crucial tomaximize execution performance. To this end, Nautilus provides two high-performance
code generation backends that aim for optimal code quality: aMLIR and a C++ backend. The MLIR
backend translates Nautilus IR to machine code using the MLIR [48] framework. MLIR provides
an extensible compiler framework based on LLVM, which is traditionally the most common code-
generation framework for compilation-based execution engines [57]. LLVM provides various ad-
vancedcompileroptimizations, e.g., auto-vectorization, andenablesNautilus to inlineproxy functions
in the generated code. Furthermore, the MLIR backend can integrate 3rd-party dialects, e.g, Lin-
goDB [37] or Daphne [20], to accelerate specific workloads. As a result, the MLIR backend can
generate highly efficient code ▲▲ at a cost of higher compilation latency ♦ (tens of milliseconds).
In contrast, the C++ backend translates Nautilus IR to C++ code, which is compiled and linked using
a standard compiler at runtime. The generated code is easier to debug and also reaches very high
throughput ▲▲. Nonetheless, compiling C++ results in considerable latency ▼ [55].
In summary, both high-performance backends produce highly efficient machine code and reach

high throughput. As the MLIR backend introduces a lower compilation latency and also provides
a higher extensibility, it is the default backend of Nautilus.

5.3.3 Specialized Backends. Modern data processing workloads often involve UDFs, which cause
a high overhead in traditional data processing systems [34, 45]. To this end, Nautilus provides a
specialized compilation backends based on Babelfish [30] that accelerates Python, Java, or JavaScript
UDFs. This accelerator leverages Truffle [81] and the GraalVM [21] for the execution of pipelines
that involve of UDFs and Nautilus operators. Using the Truffle framework, Nautilus implements
an bytecode interpreter for the Nautilus IR that integrates with existing language implementations
for, e.g., GraalJS [59] and Graal-Python [58]. This enables Nautilus to perform holistic optimization,
e.g. inlining and operator fusion, across relational, streaming, and UDF-based operators. As a result,
the UDF accelerator eliminates the overhead of UDF-based workloads and can reach a significantly
high-performance in comparison to the default backends ▲▲. However, the Graal JIT compiler also
introduces a high compilation latency ▼.

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

Query CompilationWithout Regrets 165:15

Fig. 6. Inlining of function calls between generated code and
runtime of the host system using Nautilus’ MLIR backend.

5.4 Optimizations
On the onehand, backendsmayprovide powerful optimizations that lead to highly efficient code. This
comes at the price of large dependencies (MLIR backend) or multi-second compilation times (CPP
backend). On the other hand, backends may provide very limited optimizations but offer low-latency
compilation and introduce no (bytecode interpreter) or small (Flounder) dependencies. Nautilus can
optimize the generated IR to improve the performance of these low-latency backends. While these
optimizations do not impact the MLIR backend, Nautilus can inline the runtime code of frequent
function calls into generated LLVM IR to improve the performance of the MLIR backend.

Constant Folding and Propagation: To only allocate registers for constants if and where they
are required, we fold and propagate constants. During tracing, Nautilus creates constants for values
that are only known at runtime. The basic block that defines a constant often differs from the basic
block that uses the constant. Therefore, constants need to be unnecessarily moved between basic
blocks. Additionally, multiple constants with the same value may be defined and used in the same
basic block which leads to unnecessary register allocations. In an iterative process, Nautilus first
propagates constants to the basic blockswhere they are used. Second, Nautilus checks if the constants
are actually used and if another constant with the same value can replace them.

Redundant Blocks and Operation Removal: The tracing process introduces redundant basic
blocksandoperations thatNautiluscanremove.After tracing, thegeneratedNautilus IRoftencontains
basic blocks that only contain a single branch operation. We connect the parent basic blocks of these
redundant basic blocks to the child basic blocks and thereby reduce the number of instructions and
improve the readability of Nautilus IR. Furthermore, tracing may produce redundant operations. For
example, a single basic blockmay containmultiple load operations that take the same register as input.
Performing constant propagation and folding typically increases the number of detectable redundant
operations. Removing these operations reduces the number of required registers and instructions.

Runtime Inlining:As discussed in Section 3.2, Nautilus operators, e.g., hash join or aggregations,
use function calls to call specific pre-compiled operator logic. Even though these function calls are
infrequent, they introduce an overhead and limit compiler optimizations. To mitigate this overhead,
Nautilus’s MLIR backend enables inlining pre-compiled runtime code as illustrated in Figure 6. For
each pipeline, the MLIR backend generates an LLVM IR module, which it links with a pre-compiled
set of runtime functions. Subsequently, LLVM performs optimizations on the combined module and
produces a single executable. As a result, runtime inlining eliminates the boundary between the
generated code and the runtime system. This enables further optimizations, e.g., auto-vectorization,
that improve the execution performance but increase compilation latency at the same time.

6 EVALUATION
In this section, we evaluate Nautilus on a diverse set of workloads. First, we introduce our experimen-
tal setup in Section 6.1. After that, we conduct two sets of experiments. In Section 6.2, we compare

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

165:16 PhilippM. Grulich et al.

Q1 Q3 Q6 Q9 Q18

100

1000

Ex
ec
ut
io
n

Ti
m
e
(m

s)

Baselines: DuckDB Umbra
Nautilus Backends: BC Flounder MIR MLIR C++

Fig. 7. Query execution time of TPC-H queries 1, 3, 6, 9, and 18 across
Nautilus backends, Umbra, and DuckDB (SF1).

the performance of Nautilus across relational, streaming, and UDF-based workloads. In Section 6.3,
we performmicro-experiments to study specific aspects of Nautilus.

6.1 Experimental Setup
Throughout our evaluation, we use the following hardware/software configurations and workloads.

Hardware and Software.We execute all experiments on an Intel Xenon Gold 6126 processor
with 2.6 GHz and 12 physical cores. Each physical core has a dedicated 32 KB L1 cache for data and
instructions. Additionally, each core has 1MB L2 cache, and all cores share a 19.25 MB L3 cache. The
test system consists of 755 GB of main memory and runs Ubuntu 22.04. Nautilus’ relies on LLVM-16
and GraalVM 22.3. Furthermore, we use Umbra in version 506343a1a and DuckDB version 0.8.1. We
execute all measurements using a single thread.

Workloads.Throughout this evaluation, we use the following datasets (stored inmainmemory in
a columnar format). To evaluate the OLAP performance, we use queries from the TPC-H benchmark
with different scale factors. To assess Nautilus’ performance on long-running streaming queries,
we use the Yahoo Streaming Benchmark [15] and the NexmarkBenchmark [76] as representative
workloads. For UDF-based queries, we use a set of queries, which was used in multiple previous
publications to assess the performance of big data systems on data science workloads [47, 66, 77].

6.2 SystemComparison
In this set of experiments, we evaluate Nautilus on relational (see Section 6.2.1), stream processing
(see Section 6.2.2), and UDF-based workloads (see Section 6.2.3).

6.2.1 Relational Workloads. In these experiments, we aim to assess the efficiency of Nautilus compi-
lation backends in handling typical relational data processingworkloads.We select a subset of queries
from theTPC-Hbenchmark that exhibit a diverse range of relationalworkload characteristics, such as
joins or aggregations. These queries have been used in recent research [38] to evaluate the efficiency
of data processing engines. We use Umbra [56], a highly optimized query compilation-based system,
andDuckDB [67], a representative vectorized system, as baselines. For the first set of experiments, we
keep the data size constant at SF1 and report the execution time for all queries, neglecting the query
compilation time. This experiment allows us to evaluate the quality of code generated by various
backends. Following this, we vary the data size between SF0.01 and SF10 and report the throughput,
expressed in Queries/s, for Q1, Q3, and Q6. This enables us to evaluate the effect of query compilation
time and code quality.

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

Query CompilationWithout Regrets 165:17

Q1 Q3 Q6
0

500

1,000

1,500

(a) SF0.01

Q
ue
ri
es
/s

Q1 Q3 Q6
0

100

200

300

(b) SF0.1

Q1 Q3 Q6
0

10

20

30

(c) SF1

Q
ue
ri
es
/s

Q1 Q3 Q6
0

2

4

(d) SF10

Baselines: DuckDB Umbra
Nautilus Backends: BC Flounder MIR MLIR C++

Fig. 8. Comparison of query throughput in queries/s (compilation time + query execution
time) on TPC-H queries 1, 3, and 6 across Nautilus backends, Umbra, and DuckDB.

Results. Figure 7 shows the execution time of the selected five queries. The figure demonstrates,
as anticipated, that there is a substantial difference in performance (upto 20×) between the high-
performance and low-latency backends in Nautilus. The code generated by the high-performance
backends in Nautilus is particularly efficient, enabling it to achieve comparable performance to
Umbra. However, we can also observe that Umbra outperforms high-performance backends in
Nautilus for complex queries, such as Q18. The reason for this is that for such queries Nautilus relies
on rudimentary operator implementations, does not have support for group joins, and utilizes a
chained hash-table implementation, which results in comparatively inferior performance.
Figure 8 illustrates the throughput of Nautilus’ compilation backends, expressed in Queries/s,

in relation to Umbra and DuckDB. Across all queries and scale factors, Umbra almost consistently
outperforms various backends in Nautilus by adaptively switching from a highly optimized low-
latency backed to LLVM in order to generate the most optimal code [43]. It also exhibits superior
performance toDuckDBacross all queries byup to 6×. For small scale factors (0.01 and0.1),weobserve
thatNautilus’ Flounder andMIRbackends exhibit superior performance compared to itC++andMLIR
backends. This is primarily because higher compilation time constitues the majority of the overall
query execution time for C++ andMLIR backends. In addition, we observe that MIR outperforms
Flounder by upto 2× as it generates more efficient code with comparable compilation latency. The
impact of compilation latency diminishes between scale factors 1 and 10, atwhich pointMLIR reaches
the same level of performance as Umbra and surpasses MIR and Flounder. The MLIR backened
generates SIMD code for Q6 and SF10, resulting in more efficient code than Umbra. As a result, it
outperforms Umbra by a factor of 1.2×. In contrast, Nautilus exhibits inferior performance to Umbra
for Q3 owing to the naive chained hash-table implementation which results in several cache misses.
Summary. This experiment shows that the compilation backends of Nautilus can achieve per-

formance - depending on the scale-factor - equivalent to Umbra’s highly optimized query compiler.
However, no backend is optimal across all scale factors. Thus, an adaptive approach as proposed by
Kohn [43] is required to support different workloads efficiently.

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

165:18 PhilippM. Grulich et al.

NXQ1 NXQ2 YSB
10

100

1000

Th
ro
ug

hp
ut

in
M

re
co
rd
s/
s
[lo

g]

BC Flounder MIR C++ MLIR

Fig. 9. Comparison on throughput across stream processing queries
between different Nautilus backends.

Crime DistanceSelectionMap

1

10

100

Th
ro
ug

hp
ut

in
M

U
D
F
ca
lls
/s

[lo
g]

C++ MLIR UDF Accelorator

Fig. 10. Comparison on throughput on UDF-based workloads across
Nautilus backends and its UDF accelerator.

6.2.2 Stream ProcessingWorkloads. In this experiment, we evaluate Nautilus’ compilation backends
across different stream processing workloads. As these are long-running queries, the compilation
latency becomes neglectable. Thus, we only assess execution performance in the number of records
processed per second. We evaluate the following three queries: NX1 and NX2 from the Nexmark
benchmark perform selections (NX1) andmaps (NX2). In contrast, the YSB query performs a selection
and a keyed aggregation over a tumbling time-based window of 10 seconds.
Results. Figure 9 shows the throughput of the executed queries across Nautilus’ compilation

backends. Across all queries, we observe that Nautilus’ high-performance backends, MLIR and C++,
achieve the highest performance. Both backends provide sophisticated compiler optimizations, e.g.,
auto-vectorization or loop-unrolling, to produce efficient code. Interestingly, the MLIR outperforms
C++ by up to 1.2x even though both use LLVM as a compiler. This indicates that MLIR, as an interme-
diate representation, enables additional compiler optimizations compared to C++ code. Furthermore,
our results show thatNautilus’ low-latency backends are outperformed significantly on long-running
workloads.

Summary. This experiment shows that the additional compiler optimizations of Nautilus’ high-
performance backends are crucial to reach peak performance for long-running workloads. For this
class of workloads, compilation latency is neglectable, and increasing code quality is desirable.

6.2.3 UDF-basedWorkloads. In this experiment, we evaluate the impact of Nautilus’ UDF acceler-
ator across four queries that combine relation operators with one or more Java UDFs with different
workloads characteristics. The first two queries, i.e., map and selection, involve computationally
simple UDFs and assess the UDF invocation overhead between the data processing system and the
UDF runtime. The third query calculates the average crime index for a set of cities and involves
multiple UDFs. In contrast, the last query calculates the distance between two points usingVincenty’s
formula [78] and is computationally intensive.

Results. Figure 10 shows the throughput of Nautilus’ high-performance backends, MLIR and C++,
in comparison to its UDF accelerator across all four UDF-based queries. Overall, we canmake two key
observations. First, the C++ and the MLIR backends achieve the same low performance as the UDF
overhead dominates the execution time for both. This involves the invocation of the UDF runtime,

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

Query CompilationWithout Regrets 165:19

Table 3. Comparison of compilation latency in milliseconds across Nautilus
and Umbras compilation backends for TPC-HQueries 1, 3, and 6.

Nautilus Umbra

BC MIR Flounder MLIR C++ Fast LLVM

Q1

Tracing 0.49 0.51 0.50 0.56 1.79 - -
IR Generation 0.13 0.12 0.16 0.16 0.48 0.94 0.88
Lowering 0.06 0.24 0.17 1.54 0.70 - -
Code Generation - 0.85 0.37 24 131 0.32 36.11

Σ Compilation 0.69 1.72 1.18 27.35 134 1.27 36.99

Q3

Tracing 1.05 1.08 1.07 1.24 4.20 - -
IR Generation 0.30 0.27 0.26 0.29 1.07 1.55 1.54
Lowering 0.16 0.5 0.04 3.99 1.64 - -
Code Generation - 2.1 0.76 59.66 377 0.9 46.63

Σ Compilation 1.51 3.98 2.52 65.16 381 2.45 48.17

Q6

Tracing 0.19 0.20 0.19 0.23 0.76 - -
IR Generation 0.04 0.04 0.04 0.04 0.17 0.58 0.58
Lowering 0.03 0.09 0.06 1.13 0.27 - -
Code Generation - 0.38 0.11 19.17 122 0.14 14.38

Σ Compilation 0.27 0.74 0.54 20.59 123 0.72 14.96

the data exchange between the host system and the UDF, and the data conversion. Second, the UDF
accelerator eliminates this overhead and achieves a speedup of up to two orders of magnitude. In
contrast to the Nautilus’ high-performance backends, this executes relational operators and UDFs
in the same engine, which enables holistic optimizations across operator boundaries. This approach
is even beneficial for computational intensive UDF, i.e., the distance query, as it enables further
optimization by Babelfish’s JIT compiler.
Summary. This experiment shows that specialized compilation backends have a significant

performance benefit for specific workloads. Nautilus’ UDF accelerator processes up to two orders of
magnitudes more tuples per second than Nautilus’ high-performance backends and enables efficient
UDF processing.

6.3 Compilation Backends
In this section, we conduct a set of micro experiments to assess specific aspects of Nautilus. First, we
analyze the compilation latency of Nautilus’ backends for different queries in Section 6.3.1. Second,
we study the impact of the query complexity on the compilation latency to investigate the robustness
of individual backends in Section 6.3.2. Finally, we investigate the impact of inlining in Section 6.3.4.

6.3.1 Compilation Latency. In this experiment, we examine the compilation latency of Nautilus’
compilation backends for the TPC-H Queries 1, 3, and 6. To this end, we report the cumulated
latency and break it down to analyze the latency of individual compilation phases: 1) Initial tracing.
2) Generation of Nautilus-IR. 3) Lowering to the IR of a specific compilation backend. 4) Final code
generation. As a reference, we also report the latency of IR Generation and Code-Generation of
Umbra’s low-latency and LLVM-based backends.

Results. Table 3 shows the latency breakdown of Nautilus’ compilation backends in comparison
to Umbra across the selected TPC-H queries. For Nautilus we observe that its low-latency backends

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

165:20 PhilippM. Grulich et al.

0 500 1000 1500
0
1
2
3
4
5

Number of Selections

Co
m
pi
le
Ti
m
e(
s)

Tracing Flounder MIR MLIR C++

Fig. 11. Compilation time for Tracing, Flounder,MIR,MLIR, andC++ in comparison
to the code complexity (number of selections within one operator pipeline).

compile queries in 0.27 to 3.9ms. Among these, Nautilus’ bytecode interpreter (BC) reaches the lowest
latency as it avoids any code generation. In contrast, Flounder andMIR translate the Nautilus IR to
machine code. As MIR performs more optimizations, it requires up to 3x more time to generate code
in comparison to Flounder. On the other side of the spectrum, Nautilus’ high-performance backends
induce a 35x to 100x higher compilation latency. Furthermore, our analysis reveals that Nautilus’
tracing approach requires 0.2ms to 1.24ms per query. As a result, it has a high influence on the cumu-
lated compilation time of low-latency backends (up to 60%) but is negligible for high-performance
backends. For these, the final code generation dominates the overall compilation time. In case of
the C++ backend, compilation time is up to 10x higher than in the MLIR backend. In comparison
to Umbra, we can make the following two observations. First, Umbra’s low-latency compilation
backend achieves compilation times that are, on average, 1.4 times faster than those of Nautilus.
These low compilation times are a significant factor for Umbra’s superior performance on small
scale-factors in the experiments of Section 6.2.1. Second, Umbras LLVM-based backend reaches
similar compilation times as Nautilus’ MLIR backend. The variations between these two backends
can primarily be attributed to different compiler versions and settings.
Summary. In this experiment, we investigate the compilation latency of Nautilus’ compilation

backends. We show that Nautilus’ low-latency backends reach significantly lower compilation times
compared to its high-performance backends. Furthermore, our results indicate that Nautilus is able
to reach similar compilation times as Umbra. However, our current tracing approach induces an
overhead for very short-running queries, which have a sub-millisecond execution time. For these
workloads, further reduction of compilation latency is beneficial.

6.3.2 Compilation Latency Robustness. In this experiment, we analyze the impact of the query
complexity on the latency of Nautilus’ compilation backends. To this end, we assess the compilation
latency for queries with 1 to 1500 selections. Each selection increases the control-flow nesting and
complexity of the Nautilus-IR.
Results. Figure 10 shows the latency of all compilation backends for an increasing number of

selections. As all backends require the initial tracing phase, we indicate the trace latency in blue. The
time for tracing increases linearly with the number of selections, as discussed in Section 5.1, and
reaches 400ms for 1500 selections. In comparison, Nautilus’ low-latency backends only introduce a
short additional compilation time. Even for a large number of selections, the latency of Flounder and
MIR remains similarly low. In contrast, C++ and MLIR require significantly more time and introduce
an overhead of multiple seconds.

Summary. In this experiment,we show thatNautilus’ compilation backends scale even to complex
queries. However, its high-performance backends introduce a significant compilation latency. To

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

Query CompilationWithout Regrets 165:21

Q1 Q3 Q6
0

500
1,000
1,500
2,000

(a) BC Interpreter

Ex
ec
ut
io
n

tim
e
in

m
s

None +RmBR +Const. +Remove Op.

Q1 Q3 Q6
0

100
200
300
400

(b) Flounder

Fig. 12. Impact of Nautilus IR optimizations.

handle such workloads, Nautilus could either rely on its low-latency backends or split complex
queries in multiple pipelines, which are easier to compile.

6.3.3 Impact of Nautilus IR optimizations. In this micro experiment, we evaluate the impact of
the Nautilus IR-based optimizations introduced in Section 5.4, on the bytecode interpreter and the
Flounder backend. These optimizations remove redundant branch-only blocks (RmBR), fold and
propagate constants (Const) and remove redundant operations (Remove Op). To assess the impact
of these optimizations, we gradually add them and discuss the execution and compilation times for
TPC-H Q1, Q3, and Q6 using scale factor 1.

Results. Figure 12 shows the impact of adding the different optimization phases. The RmBR opti-
mization only significantly impacts Q3 for the bytecode interpreter, improving execution time by 7%.
The constant folding and propagation and the redundant operation removal optimizations show simi-
lar results for Flounder onQ1 andQ6, leading to 8% improvements. The constant optimization is espe-
cially effective for the bytecode interpreter, leading to 10%+ improvements across all queries. Overall,
the execution times of Flounder are improved by up to 16%. The execution times of the bytecode inter-
preter are improvedbyup to 27%.The additional compilation times ranged from0.1 to 0.5milliseconds.

Summary. In this experiment, we show that optimization passes on Nautilus IR can significantly
impact the execution time of low-latency backends at a relatively small compilation time cost.

6.3.4 Impact of Runtime Inlining. In this micro experiment, we assess the impact of runtime inlining
for Nautilus’ MLIR backend as proposed in Section 5.4. This optimization eliminates function calls
from the generated code, e.g., to access data structures, and enables further compiler optimizations.
To assess the impact of this optimization, we report the execution and compilation times of Nautilus
for TPC-H Q1, Q3, and Q6 with and without inlining, using scale factor 1.

Results. Figure 13 shows the impact of inlining on the execution time (a) and compilation time (b).
For Queries 1 and 3 inlining reduces the execution time by up to 20% as both queries involve function
calls to hash-tables that can be inlined. After inlining, the compilation backend can perform further
optimizations like loop unrolling, which are not performed in the presents of function calls. In
contrast, inlining does not impact the execution time of Query 6 as its generated code contains no
function calls. In addition to the execution time, inlining significantly impacts the compilation time,
which increases by up to a factor of 2.4x.

Summary. In this experiment, we show that runtime inlining can significantly impact the execu-
tion time of queries. However, it also has a high compilation time overhead. As a result, it is beneficial
for long-running queries.

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

165:22 PhilippM. Grulich et al.

Q1 Q3 Q6
0
20
40
60

(a) Execution Time

Ex
ec
ut
io
n

tim
e
in

m
s

No Inlining Inlining

Q1 Q3 Q6
0
50
100
150

(b) Compilation Time

C
om

pi
la
tio

n
Ti
m
e
in

m
s

Fig. 13. Impact of runtime inlining for theMLIR backend.

6.4 Discussion
Overall, ourevaluationshows thatNautilusprovidesefficientcodegeneration forvariousdataprocess-
ing workloads. Its compilation backends provide low compilation latency for short-running queries,
achieve high performance for long-running queries, and accelerate special workloads, such as UDFs.
Furthermore, Nautilus reaches comparable performance to highly-optimized compilation-based
engines like Umbrawhile it provides a high-level operator implementation interface. This enables en-
gineers to focus ondeveloping features and relieves themof the complexity of traditional query compi-
lationapproaches. Finally,wedemonstrated thatNautilus reacheshighperformanceoncomplexwork-
loads and can provide performance improvements through inlining for very long-running queries.

7 COMPLEXITY ANALYSIS
Designing and developing a query compiler is inherently challenging; end users building the query
engine face an even greater challenge when attempting to use these compilers for daily development
tasks. Over the years, we have witnessed widespread use and subsequent discontinuation of query
compilers because of such challenges. Our group is involved in a multi-year effort to create a novel
data processing system for batch and stream processing called NebulaStream [82, 83]. Over the years,
we have developed multiple query compilers for NebulaStream [29, 30] to target different use-cases.
Following a discussion on the implementation complexity of various query compilers, this section
further describes our personal experience developing multiple query compilers and how it has (i)
influenced the design of the Nautilus, and (ii) garnered positive feedback from a small community.
Implementation Complexity.Nautilus’ significantly reduces the complexity of compilation-

based execution engines. To demonstrate this aspect, we analyses the implementations of represen-
tative compilation-based systems. Table 4 compares the lines of code of selected operators implemen-
tations across Nautilus, Hawk [11], Mutable [33], MxDB [24], LingoDB [37], and DBLAB [70]. Hawk,
Mutable, andMxDB follow a traditional query compilation approach [55]. Each operator provides
a template to directly generate low-level code, i.e., C++ in Hawk, WebAssembly in Mutable, and
Flounder-IR in MxDB. Depending on the operator, these templates become very large, complexity,
and hard to maintain. In contrast, LingoDB and DBLAB use declarative IRs to reduce the complexity
of operators. However, this also spreads implementation details across multiple abstraction levels,
whichmakes operators hard to debug. In contrast, Nautilus provides an imperative operator interface
and uses tracing to generate efficient code. This enables Nautilus to reduce the code complexity using
high-level abstraction that are still easy to debug with common programming tools.
Community Experience. NebulaStream has a small community of contributors comprising

bachelor, master, and Ph.D. students with varying degrees of expertise. Over the years, they have
engaged with the query compilers either directly, by implementing or improving operators [52, 69],
or indirectly, by debugging queries to evaluate specific optimizations [13, 14].While using the earlier
versions of the query compiler most of them needed hands-on supervision in daily tasks, which was

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

Query CompilationWithout Regrets 165:23

Table 4. Comparison of complexity of query compilers.

Scan Projection Selection Aggregation Join

Use Code Templates
Hawk [11] 115 98 130 389 625
Mutable [33] 108 161 111 1441 242
MxDB [24] 51 / 45 613 216

Use Declarative-IRs
LingoDB [37] 36 / 14 384 149
DBLAB [70] 22 16 13 83 42

Nautilus 18 16 8 91 190

extremely challenging to scale. Developing an operator implementation interface that is intuitive
for users was one solution, which led us to design our interface similar to the widely-adopted Vol-
cano [27] model. This garnered very positive feedback and led to general supervision (e.g., GitHub
PR comments). Designing the query compiler, which makes it relatively easier to debug the system,
was more challenging. Bugs can persist in operator logic, one of the backends, or in-between (e.g.,
Nautilus-IR). Implementing a unified IR using our trace-based technique has proven beneficial in
these instances. In case a bug persists across multiple backends, it typically indicates that the bug
is in the operator logic. In such cases, the interpretation backend greatly simplifies debugging by
direct inspection with debuggers such as gdb. Nautilus has also helped identify and isolate backend
bugs. In multiple instances, we were able to narrow down the source of the bug to a single backend
using Nautilus as it exclusively occurred in that backend. Lastly, there is a loose-coupling between
Nautilus-IR and different backends, which makes bugs related to undefined behaviour harder to
detect. In such cases, we have relied on using sanitizers in our compilation backends.

8 RELATEDWORK
Over the past decade, query compilation has been the subject of extensive research [46, 55, 68] and
implemented in a wide range of data processing systems [1, 23, 46, 51, 55, 56, 61, 62, 80]. In general,
Nautilus differs from prior works in three directions, i.e., work on code generation abstractions, work
on low-latency query compilation, and work that applies query compilation to diverse workloads.

Code generation abstractions. The first line of research proposed interfaces and abstractions to
reduce the complexity of compilation-based query execution engines [2, 4, 11].Many query compilers
generate code in programming languages like C++, Java, or OpenCL tomake the generated code easy
to debug [11]. However, this often leads to significant compilation latencies. For example, Amazon
Redshift employed a global cache tomitigate compilation overhead [4]. However, Nautilus decouples
the implementationofoperators and their execution.Engineers candebugoperatorsdirectlywhile the
compiler translates them to efficient code at runtime. Similarly, researchers proposedDomain Specific
Languages (DSLs), likeLMS[70],Voila [31],Weld [60, 61], orVoodoo [65], todecouple implementation
and execution. TheseDSLs introduce declarative primitives that represent specific data processing op-
erations, e.g., hash, bucket_insert in Voila [31]. In contrast toNautilus operators, theseDSLs do not
map directly to imperative implementations, which hinders testing and debugging. Additional work
proposed programming interfaces for code generation [32, 39]. Although this hides the details of code
generation, it does not address the fundamental mismatch between the implementation of operators
that generate code and the executed code at runtime. In contrast, Nautilus’ operators and data struc-
tures correspond directly to C++ code, simplifying development, testing, and maintenance. Recent
work uses MLIR [48] as a framework for query compilation in data processing systems [20, 36, 37].
These approaches introduce specialized MLIR dialects to model primitive data processing operations
similar to Voila [31]. In contrast, Nautilus uses MLIR as a compilation backend for Nautilus IR. To

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

165:24 PhilippM. Grulich et al.

this end, it only relies on standard dialects, which simplifies our MLIR integration. Nautilus hides the
details ofMLIR compiler internals fromengineers and allows to implement operators in standardC++.

Low-latencyQueryCompilation.The second research area focused on techniques to reduce the
latency of query compilers [24, 32, 39, 43]. To this end, Kohn et al. [43] proposed bytecode interpreta-
tion, Funke et al. [24] andKersten et al. [39] proposed special purpose compilers, andHaffner et al. [32]
proposed to use V8 as a JIT-compiler. Nautilus incorporates these approaches and provides different
compilation backends using bytecode interpretation, special-purpose compilers, and low-latency JIT
compilers. This enables Nautilus to compare the individual techniques and to target a wide range of
workloads, including short-running queries. To this end, Nautilus can choose a specific compilation
backend depending on the workload and hardware characteristics. This allows Nautilus to support
x64 aswell asARMCPUarchitectures and relieves engineers from the complexity of developing query
compilers from scratch. Orthogonal to our work,Wagner et al. [79] recently proposed the generation
of a vectorized interpretation-based engine from a query compiler. This is a compelling approach to
reduce startup latency and can be combined with the Nautilus operator implementation framework.

DiverseWorkloads.The third line of research leverages query compilation to accelerate different
data processingworkloads, e.g., streamprocessing [7, 29, 35, 75], spatial data processing [73],machine
learning [20], and polyglot queries involving UDFs [17, 22, 30, 71, 72]. Nautilus integrates many
aspects of these works to target diverse workloads. It adapts the efficient operators for stream pro-
cessing proposed by LightSaber [75], Grizzly [29], and Darwin [7] and provides additional compiler
optimizations to increase execution performance, e. g., runtime inlining. Furthermore, Nautilus’
Babelfish [30]-based UDF accelerator extends previous work like YeSQL [22] and Tuplex [72] and
enables holistic optimization across relational operators and UDFs. Supporting these workloads
underpins the flexibility of Nautilus’ compilation approach.

9 CONCLUSION
In this paper,wehavepresentedNautilus, a framework tobridge thegapbetweenquery interpretation
and compilation. Nautilus addresses two crucial challenges of current query compilation approaches.
First, operators in compilation-based engines are hard to implement as they generate code at runtime.
To this end, Nautilus provides an interface that enables system engineers to implement operators
in imperative code that is easy to develop, debug, and maintain. Second, research proposed a variety
of query compilation approaches that optimize for specific workloads. In contrast, Nautilus proposes
a trace-based JIT compiler that decouples the implementation of operators from their execution. At
execution time, it provides multiple compilation backends with different performance characteristics
to efficiently support specific data processing workloads. As a result, Nautilus compiles queries to
efficient code without sacrificing the productivity of engineers. Thus, Nautilus enables engineers
to focus on feature development instead of handling the complexity of query compilation. Our
evaluation shows that Nautilus achieves high performance across various workloads and reaches
the performance of state-of-the-art query compilers.

Overall, Nautilus makes query compilation more accessible to a broader audience. To this end, we
plan to provide Nautilus as an open framework that is easy to integrate with different data processing
systems. This reduces the engineering effort,which is needed to develop compilation-based execution
engines and helps researchers to focus on data-processing related challenges.

10 ACKNOWLEDGMENTS
This work was funded by the DFG Priority Program (MA4662-5), the German Federal Ministry for
Education and Research as BIFOLD - Berlin Institute for the Foundations of Learning and Data
(BIFOLD22B and BIFOLD23B). Furthermore, we thank Matthis Gördel for his support and feedback.

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

Query CompilationWithout Regrets 165:25

REFERENCES
[1] Sameer Agarwal, Davies Liu, and Reynold Xin. 2016. Apache Spark as a Compiler: Joining a Billion Rows per Second

on a Laptop. https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-
on-a-laptop.html. [Online; accessed 31.5.2019].

[2] Yanif Ahmad and Christoph Koch. 2009. DBToaster: A SQL Compiler for High-Performance Delta Processing in
Main-Memory Databases. PVLDB 2, 2 (aug 2009), 1566–1569. https://doi.org/10.14778/1687553.1687592

[3] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan,
Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In SIGMOD.
ACM, 1383–1394. https://doi.org/10.1145/2723372.2742797

[4] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh Chainani, Kiran Chinta, Venkatraman
Govindaraju, Todd J. Green, Monish Gupta, Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael
McCreedy, Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Polychroniou, Foyzur Rahman,
Gaurav Saxena, Gokul Soundararajan, Sriram Subramanian, and Doug Terry. 2022. Amazon Redshift Re-Invented.
In SIGMOD. ACM, 2205–2217. https://doi.org/10.1145/3514221.3526045

[5] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. 2000. Dynamo: A Transparent Dynamic Optimization System.
In PLDI. ACM, 1–12. https://doi.org/10.1145/349299.349303

[6] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David Cashman, Ankur Dave, Todd
Greenstein, Shant Hovsepian, Ryan Johnson, Arvind Sai Krishnan, Paul Leventis, Ala Luszczak, Prashanth Menon,
Mostafa Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart Samwel, Tom van Bussel, Herman Van Hovell,
Maryann Xue, Reynold Xin, and Matei Zaharia. 2022. Photon: A Fast Query Engine for Lakehouse Systems. In SIGMOD.
ACM, 2326–2339. https://doi.org/10.1145/3514221.3526054

[7] Lawrence Benson and Tilmann Rabl. 2022. Darwin: Scale-in stream processing. In CIDR. https:
//www.cidrdb.org/cidr2022/papers/p34-benson.pdf

[8] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. 2009. Tracing the meta-level: PyPy’s tracing
JIT compiler. In ICOOOLPS. ACM, 18–25. https://doi.org/10.1145/1565824.1565827

[9] Peter A Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-Pipelining Query Execution. In CIDR.
225–237. http://cidrdb.org/cidr2005/papers/P19.pdf

[10] Ajay Brahmakshatriya and Saman Amarasinghe. 2021. BuildIt: A Type-BasedMulti-stage Programming Framework
for Code Generation in C++. In CGO. https://doi.org/10.1109/CGO51591.2021.9370333

[11] Sebastian Breß, Bastian Köcher, Henning Funke, Steffen Zeuch, Tilmann Rabl, and Volker Markl. 2018. Generating
custom code for efficient query execution on heterogeneous processors. The VLDB Journal 27 (2018), 797–822.
https://doi.org/10.1007/s00778-018-0512-y

[12] Tom Britton, Lisa Jeng, GrahamCarver, Tomer Katzenellenbogen, and Paul Cheak. 2020. Reversible Debugging Software
"Quantify the time and cost saved using reversible debuggers". (11 2020).

[13] Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Alphan Eracar, Steffen Zeuch, and Volker Markl. 2024. Efficient
Placement of Decomposable Aggregation Functions for Stream Processing over Large Geo-Distributed Topologies.
Proceedings of the VLDB Endowment 17, 6 (2024), 1501–1514.

[14] Ankit Chaudhary, Steffen Zeuch, Volker Markl, and Jeyhun Karimov. 2023. Incremental Stream Query Merging. In
EDBT 2023. OpenProceedings.org, 604–617. https://doi.org/10.48786/edbt.2023.51

[15] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves, Mark Holderbaugh, Zhuo Liu, Kyle
Nusbaum, Kishorkumar Patil, Boyang Peng, and Paul Poulosky. 2016. Benchmarking Streaming Computation Engines:
Storm, Flink and Spark Streaming. In IPDPS. IEEE, 1789–1792. https://doi.org/10.1109/IPDPSW.2016.138

[16] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Carsten Binnig, Ugur Cetintemel, and Stan
Zdonik. 2015. An Architecture for Compiling UDF-Centric Workflows. PVLDB 8, 12 (aug 2015), 1466–1477.
https://doi.org/10.14778/2824032.2824045

[17] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Ugur Çetintemel, and Stanley B. Zdonik. 2015. Tupleware:
"Big" Data, Big Analytics, Small Clusters. In CIDR. http://cidrdb.org/cidr2015/Papers/CIDR15_Paper23u.pdf

[18] Andrew Crotty, Alex Galakatos, and Tim Kraska. 2020. Getting Swole: Generating Access-Aware Code with Predicate
Pullups. In IEEE ICDE. 1273–1284. https://doi.org/10.1109/ICDE48307.2020.00114

[19] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes, Jon Bock, Jonathan Claybaugh,
Daniel Engovatov, Martin Hentschel, Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven
Pelley, Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016. The Snowflake Elastic Data
Warehouse. InACM SIGMOD (San Francisco, California, USA) (SIGMOD ’16). Association for Computing Machinery,
New York, NY, USA, 215–226. https://doi.org/10.1145/2882903.2903741

[20] Patrick Damme, Marius Birkenbach, Constantinos Bitsakos, Matthias Boehm, Philippe Bonnet, Florina M. Ciorba,
Mark Dokter, Pawel Dowgiallo, Ahmed Eleliemy, Christian Faerber, Georgios I. Goumas, Dirk Habich, Niclas Hedam,
Marlies Hofer, Wenjun Huang, Kevin Innerebner, Vasileios Karakostas, Roman Kern, Tomaz Kosar, Alexander Krause,

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://doi.org/10.14778/1687553.1687592
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/3514221.3526045
https://doi.org/10.1145/349299.349303
https://doi.org/10.1145/3514221.3526054
https://www.cidrdb.org/cidr2022/papers/p34-benson.pdf
https://www.cidrdb.org/cidr2022/papers/p34-benson.pdf
https://doi.org/10.1145/1565824.1565827
http://cidrdb.org/cidr2005/papers/P19.pdf
https://doi.org/10.1109/CGO51591.2021.9370333
https://doi.org/10.1007/s00778-018-0512-y
https://doi.org/10.48786/edbt.2023.51
https://doi.org/10.1109/IPDPSW.2016.138
https://doi.org/10.14778/2824032.2824045
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper23u.pdf
https://doi.org/10.1109/ICDE48307.2020.00114
https://doi.org/10.1145/2882903.2903741

165:26 PhilippM. Grulich et al.

Daniel Krems, Andreas Laber, Wolfgang Lehner, Eric Mier, Marcus Paradies, Bernhard Peischl, Gabrielle Poerwawinata,
Stratos Psomadakis, Tilmann Rabl, Piotr Ratuszniak, Pedro Silva, Nikolai Skuppin, Andreas Starzacher, Benjamin
Steinwender, Ilin Tolovski, Pinar Tözün, Wojciech Ulatowski, Yuanyuan Wang, Izajasz P. Wrosz, Ales Zamuda, Ce
Zhang, and Xiaoxiang Zhu. 2022. DAPHNE: An Open and Extensible System Infrastructure for Integrated Data Analysis
Pipelines. In CIDR 2022. www.cidrdb.org. https://www.cidrdb.org/cidr2022/papers/p4-damme.pdf

[21] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and Hanspeter Mössenböck.
2013. An Intermediate Representation for Speculative Optimizations in a Dynamic Compiler. In VMIL. ACM.
https://doi.org/10.1145/2542142.2542143

[22] Yannis Foufoulas, Alkis Simitsis, Lefteris Stamatogiannakis, and Yannis Ioannidis. 2022. YeSQL: "You Extend SQL"
with Rich and Highly Performant User-Defined Functions in Relational Databases. Proc. VLDB Endow. 15, 10 (jun 2022),
2270–2283. https://doi.org/10.14778/3547305.3547328

[23] Craig Freedman, Erik Ismert, and Per-Åke Larson. 2014. Compilation in the Microsoft SQL Server Hekaton Engine.
IEEE Data Engineering Bulletin 37 (2014), 22–30. http://sites.computer.org/debull/A14mar/p22.pdf

[24] Henning Funke, Jan Mühlig, and Jens Teubner. 2020. Efficient Generation of Machine Code for Query Compilers. In
DaMoN. ACM. https://doi.org/10.1145/3399666.3399925

[25] Henning Funke and Jens Teubner. 2020. Data-parallel query processing on non-uniform data. PVLDB 13, 6 (2020),
884–897. https://doi.org/10.14778/3380750.3380758

[26] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R. Haghighat, Blake Kaplan,
Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruderman, EdwinW. Smith, Rick Reitmaier, Michael Bebenita,
Mason Chang, and Michael Franz. 2009. Trace-based just-in-time type specialization for dynamic languages. PLDI
(2009), 465–478. https://doi.org/10.1145/1542476.1542528

[27] Goetz Graefe. 1994. Volcano/spl minus/an extensible and parallel query evaluation system. TKDE (1994).
[28] Ferdinand Gruber, Maximilian Bandle, Alexis Engelke, Thomas Neumann, and Jana Giceva. 2023. Bringing Compiling

Databases to RISC Architectures. PVLDB 16, 6 (apr 2023), 1222–1234. https://doi.org/10.14778/3583140.3583142
[29] Philipp M Grulich, Breß Sebastian, Steffen Zeuch, Jonas Traub, Janis von Bleichert, Zongxiong Chen, Tilmann Rabl,

and Volker Markl. 2020. Grizzly: Efficient Stream Processing Through Adaptive Query Compilation. In SIGMOD. ACM,
2487–2503. https://doi.org/10.1145/3318464.3389739

[30] Philipp Marian Grulich, Steffen Zeuch, and Volker Markl. 2021. Babelfish: Efficient Execution of Polyglot Queries. Proc.
VLDB Endow. 15, 2 (oct 2021), 196–210. https://doi.org/10.14778/3489496.3489501

[31] Tim Gubner and Peter Boncz. 2021. Charting the Design Space of Query Execution Using VOILA. PVLDB 14, 6 (feb
2021), 1067–1079. https://doi.org/10.14778/3447689.3447709

[32] Immanuel Haffner and Jens Dittrich. 2023. A Simplified Architecture for Fast, Adaptive Compilation and Execution
of SQL Queries. In EDBT 2023. OpenProceedings.org. https://doi.org/10.48786/edbt.2023.01

[33] Immanuel Haffner and Jens Dittrich. 2023. A Simplified Architecture for Fast, Adaptive Compilation and Execution of
SQL Queries. In Proceedings of the 26th International Conference on Extending Database Technology, EDBT 2023, Ioannina,
Greece, March 28 - March 31, 2023. OpenProceedings.org.

[34] IBM. 2020. Avoid UDFs as join predicates. https://www.ibm.com/support/knowledgecenter/en/SSPT3X_4.2.0/com.
ibm.swg.im.infosphere.biginsights.text.doc/doc/ana_txtan_udf-join-guideline.html.

[35] Anand Jayarajan, Wei Zhao, Yudi Sun, and Gennady Pekhimenko. 2023. TiLT: A Time-Centric Approach for Stream
Query Optimization and Parallelization. In Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). ACM, New York,
NY, USA, 818–832. https://doi.org/10.1145/3575693.3575704

[36] Michael Jungmair and Jana Giceva. 2023. Declarative Sub-Operators for Universal Data Processing. Proc. VLDB Endow.
16, 11 (aug 2023), 3461–3474. https://doi.org/10.14778/3611479.3611539

[37] Michael Jungmair, André Kohn, and Jana Giceva. 2022. Designing an Open Framework for Query Optimization and
Compilation. PVLDB 15, 11 (jul 2022), 2389–2401. https://doi.org/10.14778/3551793.3551801

[38] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and Peter A. Boncz. 2018. Everything
You Always Wanted to Know About Compiled and Vectorized Queries But Were Afraid to Ask. PVLDB (2018).
https://doi.org/10.14778/3275366.3275370

[39] Timo Kersten, Viktor Leis, and Thomas Neumann. 2021. Tidy Tuples and Flying Start: Fast Compilation and Fast
Execution of Relational Queries in Umbra. VLDB J. (2021). https://doi.org/10.1007/s00778-020-00643-4

[40] Timo Kersten and Thomas Neumann. 2020. On another level: how to debug compiling query engines. In Proceedings
of the workshop on Testing Database Systems. 1–6.

[41] Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. 2014. Building efficient query engines in a high-level
language. In PVLDB, Vol. 7. VLDB Endowment, 853–864. https://doi.org/10.14778/2732951.2732959

[42] Petr Kobalicek. 2023. AsmJit: Low-Latency Machine Code Generation. https://asmjit.com/. [Online; accessed 22.6.2023].
[43] André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive execution of compiled queries. In ICDE. IEEE, 197–208.

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

https://www.cidrdb.org/cidr2022/papers/p4-damme.pdf
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.14778/3547305.3547328
http://sites.computer.org/debull/A14mar/p22.pdf
https://doi.org/10.1145/3399666.3399925
https://doi.org/10.14778/3380750.3380758
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.14778/3583140.3583142
https://doi.org/10.1145/3318464.3389739
https://doi.org/10.14778/3489496.3489501
https://doi.org/10.14778/3447689.3447709
https://doi.org/10.48786/edbt.2023.01
https://www.ibm.com/support/knowledgecenter/en/SSPT3X_4.2.0/com.ibm.swg.im.infosphere.biginsights.text.doc/doc/ana_txtan_udf-join-guideline.html
https://www.ibm.com/support/knowledgecenter/en/SSPT3X_4.2.0/com.ibm.swg.im.infosphere.biginsights.text.doc/doc/ana_txtan_udf-join-guideline.html
https://doi.org/10.1145/3575693.3575704
https://doi.org/10.14778/3611479.3611539
https://doi.org/10.14778/3551793.3551801
https://doi.org/10.14778/3275366.3275370
https://doi.org/10.1007/s00778-020-00643-4
https://doi.org/10.14778/2732951.2732959
https://asmjit.com/

Query CompilationWithout Regrets 165:27

[44] AndréKohn,Viktor Leis, andThomasNeumann. 2021. BuildingAdvancedSQLAnalytics FromLow-Level PlanOperators.
In SIGMOD ’21: International Conference on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 1001–1013. https://doi.org/10.1145/3448016.3457288

[45] Hugo Kornelis. 2012. T-SQL User-Defined Functions: the good, the bad, and the ugly. https://sqlserverfast.com/blog/
hugo/2012/05/t-sql-user-defined-functions-the-good-the-bad-and-the-ugly-part-1/

[46] Konstantinos Krikellas, Stratis D Viglas, andMarcelo Cintra. 2010. Generating code for holistic query evaluation. In
ICDE. 613–624.

[47] Andreas Kunft, Lukas Stadler, Daniele Bonetta, Cosmin Basca, Jens Meiners, Sebastian Breß, Tilmann Rabl, Juan José
Fumero, and Volker Markl. 2018. ScootR: Scaling R Dataframes on Dataflow Systems.. In SoCC. ACM.

[48] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana
Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific
Computation. In CGO. IEEE. https://doi.org/10.1109/cgo51591.2021.9370308

[49] Vladimir Makarov. 2020. MIR: A lightweight JIT compiler project. https://developers.redhat.com/blog/2020/01/20/mir-
a-lightweight-jit-compiler-project. [Online; accessed 22.6.2023].

[50] Prashanth Menon, Todd C. Mowry, and Andrew Pavlo. 2017. Relaxed Operator Fusion for In-memory Databases:
Making Compilation, Vectorization, and Prefetching Work Together at Last. In PVLDB, Vol. 11. VLDB Endowment,
1–13. https://doi.org/10.14778/3151113.3151114

[51] Prashanth Menon, Amadou Ngom, Lin Ma, Todd C. Mowry, and Andrew Pavlo. 2020. Permutable Compiled Queries:
DynamicallyAdaptingCompiledQuerieswithoutRecompiling. PVLDB (2020). https://doi.org/10.14778/3425879.3425882

[52] Adrian Michalke, Philipp M. Grulich, Clemens Lutz, Steffen Zeuch, and Volker Markl. 2021. An energy-efficient stream
join for the Internet of Things. InDaMoN. 1–6. https://doi.org/10.1145/3465998.3466005

[53] Josh Mintz. 2017. In this iteration of Database Deep Dives, we had the pleasure of catching up with Professor Andy
Pavlo. https://www.ibm.com/cloud/blog/database-deep-dives-with-andy-pavlo

[54] Ingo Müller and otehrs. 2020. The Collection Virtual Machine: An Abstraction for Multi-Frontend Multi-Backend Data
Analysis. InDaMoN. https://doi.org/10.1145/3399666.3399911

[55] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern Hardware. In PVLDB, Vol. 4. VLDB
Endowment, 539–550.

[56] Thomas Neumann andMichael J Freitag. 2020. Umbra: A Disk-Based Systemwith In-Memory Performance. In CIDR.
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf

[57] Thomas Neumann and Guido Moerkotte. 2009. Generating optimal DAG-structured query evaluation plans. Computer
Science-Research and Development (2009). https://doi.org/10.1007/s00450-009-0061-0

[58] Oracle. 2020. Graal Python. https://github.com/graalvm/graalpython.
[59] Oracle. 2020. GraalJS. https://github.com/graalvm/graaljs.
[60] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul Palamuttam, Parimarjan Negi, Anil

Shanbhag, Malte Schwarzkopf, Holger Pirk, Saman P. Amarasinghe, Samuel Madden, and Matei Zaharia. 2018.
Evaluating End-to-End Optimization for Data Analytics Applications in Weld. PVLDB 11, 9 (2018), 1002–1015.
https://doi.org/10.14778/3213880.3213890

[61] Shoumik Palkar, James Thomas, Anil Shanbhag, Deepak Narayanan, Holger Pirk, Malte Schwarzkopf, Saman P.
Amarasinghe, and Matei Zaharia. 2017. Weld: A common runtime for high performance data analytics. In CIDR.
http://cidrdb.org/cidr2017/papers/p127-palkar-cidr17.pdf

[62] Paroski Paroski. 2016. Code generation: The inner sanctum of database performance. http://highscalability.com/blog/
2016/9/7/code-generation-the-inner-sanctum-ofdatabase-performance.html. [Online; accessed 31.5.2019].

[63] Mosha Pasumansky and Benjamin Wagner. 2022. Assembling a Query Engine From Spare Parts. In CDMS.
https://cdmsworkshop.github.io/2022/Proceedings/ShortPapers/Paper1_MoshaPasumansky.pdf

[64] Pedro Pedreira, Orri Erling, Maria Basmanova, Kevin Wilfong, Laith S. Sakka, Krishna Pai, Wei He, and
Biswapesh Chattopadhyay. 2022. Velox: Meta’s Unified Execution Engine. PVLDB 15, 12 (2022), 3372–3384.
https://doi.org/10.14778/3554821.3554829

[65] Holger Pirk, Oscar Moll, Matei Zaharia, and SamMadden. 2016. Voodoo - a Vector Algebra for Portable Database Perfor-
mance onModernHardware. In PVLDB, Vol. 9. VLDBEndowment, 1707–1718. https://doi.org/10.14778/3007328.3007336

[66] Vignesh Prajapati. 2013. Big data analytics with R and Hadoop. Packt Publishing Ltd.
[67] Mark Raasveldt andHannesMühleisen. 2019. DuckDB: an embeddable analytical database. In SIGMOD. ACM, 1981–1984.

https://doi.org/10.1145/3299869.3320212
[68] Jun Rao, Hamid Pirahesh, C Mohan, and Guy Lohman. 2006. Compiled query execution engine using JVM. In ICDE.

IEEE. https://doi.org/10.1109/ICDE.2006.40
[69] Nils Schubert, Philipp M. Grulich, Steffen Zeuch, and Volker Markl. 2023. Exploiting Access Pattern Characteristics

for Join Reordering. InDaMoN 2023. https://doi.org/10.1145/3592980.3595304

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

https://doi.org/10.1145/3448016.3457288
https://sqlserverfast.com/blog/hugo/2012/05/t-sql-user-defined-functions-the-good-the-bad-and-the-ugly-part-1/
https://sqlserverfast.com/blog/hugo/2012/05/t-sql-user-defined-functions-the-good-the-bad-and-the-ugly-part-1/
https://doi.org/10.1109/cgo51591.2021.9370308
https://developers.redhat.com/blog/2020/01/20/mir-a-lightweight-jit-compiler-project
https://developers.redhat.com/blog/2020/01/20/mir-a-lightweight-jit-compiler-project
https://doi.org/10.14778/3151113.3151114
https://doi.org/10.14778/3425879.3425882
https://doi.org/10.1145/3465998.3466005
https://www.ibm.com/cloud/blog/database-deep-dives-with-andy-pavlo
https://doi.org/10.1145/3399666.3399911
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://doi.org/10.1007/s00450-009-0061-0
 https://github.com/graalvm/graalpython
 https://github.com/graalvm/graaljs
https://doi.org/10.14778/3213880.3213890
http://cidrdb.org/cidr2017/papers/p127-palkar-cidr17.pdf
http://highscalability. com/blog/2016/9/7/code-generation-the-inner-sanctum-ofdatabase-performance. html
http://highscalability. com/blog/2016/9/7/code-generation-the-inner-sanctum-ofdatabase-performance. html
https://cdmsworkshop.github.io/2022/Proceedings/ShortPapers/Paper1_MoshaPasumansky.pdf
https://doi.org/10.14778/3554821.3554829
https://doi.org/10.14778/3007328.3007336
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1109/ICDE.2006.40
https://doi.org/10.1145/3592980.3595304

165:28 PhilippM. Grulich et al.

[70] Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad Dashti, and Christoph Koch. 2016. How
to architect a query compiler. In SIGMOD. https://doi.org/10.1145/2882903.2915244

[71] Moritz Sichert and Thomas Neumann. 2022. User-Defined Operators: Efficiently Integrating Custom Algorithms into
Modern Databases. PVLDB 15, 5 (2022), 1119–1131.

[72] Leonhard Spiegelberg, Rahul Yesantharao, Malte Schwarzkopf, and Tim Kraska. 2021. Tuplex: Data Science
in Python at Native Code Speed. In Proceedings of the 2021 International Conference on Management of Data
(Virtual Event, China) (SIGMOD ’21). Association for Computing Machinery, New York, NY, USA, 1718–1731.
https://doi.org/10.1145/3448016.3457244

[73] Ruby Y. Tahboub and Tiark Rompf. 2020. Architecting a Query Compiler for Spatial Workloads. In SIGMOD. ACM,
2103–2118. https://doi.org/10.1145/3318464.3389701

[74] Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-LungWu. 2015. General incremental sliding-window
aggregation. In PVLDB, Vol. 8. VLDB Endowment, 702–713. https://doi.org/10.14778/2752939.2752940

[75] Georgios Theodorakis, Alexandros Koliousis, Peter Pietzuch, and Holger Pirk. 2020. LightSaber: Efficient Window
Aggregation onMulti-Core Processors. In SIGMOD. ACM, 2505–2521. https://doi.org/10.1145/3318464.3389753

[76] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. 2008. Nexmark-a benchmark for queries over
data streams. Technical Report. Technical Report. Technical report, OGI School of Science & Engineering at
https://datalab.cs.pdx.edu/niagara/pstream/nexmark.pdf

[77] Shivaram Venkataraman, Zongheng Yang, Davies Liu, Eric Liang, Hossein Falaki, Xiangrui Meng, Reynold Xin, Ali
Ghodsi, Michael J. Franklin, Ion Stoica, and Matei Zaharia. 2016. SparkR: Scaling R Programs with Spark. In SIGMOD.
ACM, 1099–1104. https://doi.org/10.1145/2882903.2903740

[78] Thaddeus Vincenty. 1975. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations.
Survey review 23, 176 (1975), 88–93. https://doi.org/10.1179/sre.1975.23.176.88

[79] Benjamin Wagner, Andre Kohn, Peter Boncz, and Viktor Leis. 2024. Incremental Fusion: Unifying Compiled and
Vectorized Query Execution. In ICDE.

[80] Skye Wanderman-Milne and Nong Li. 2014. Runtime Code Generation in Cloudera Impala. IEEE Data Engineering
Bulletin (2014). http://sites.computer.org/debull/A14mar/p31.pdf

[81] Christian Wimmer and Thomas Würthinger. 2012. Truffle: A Self-Optimizing Runtime System. In SPLASH. ACM.
https://doi.org/10.1145/2384716.2384723

[82] Steffen Zeuch, Ankit Chaudhary, Bonaventura Del Monte, Haralampos Gavriilidis, Dimitrios Giouroukis, PhilippM.
Grulich, Sebastian Breß, Jonas Traub, and Volker Markl. 2020. The NebulaStream Platform for Data and Application
Management in the Internet of Things. In CIDR. http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf

[83] Steffen Zeuch, Eleni Tzirita Zacharatou, Shuhao Zhang, Xenofon Chatziliadis, Ankit Chaudhary, Bonaven-
tura Del Monte, Dimitrios Giouroukis, Philipp M Grulich, Ariane Ziehn, and Volker Mark. 2020. Nebulas-
tream: Complex analytics beyond the cloud. Open Journal of Internet Of Things (OJIOT) 6, 1 (2020), 66–81.
https://www.ronpub.com/ojiot/OJIOT_2020v6i1n07_Zeuch.html

Received October 2023; revised January 2024; accepted March 2024

Proc. ACMManag. Data, Vol. 2, No. 3 (SIGMOD), Article 165. Publication date: June 2024.

https://doi.org/10.1145/2882903.2915244
https://doi.org/10.1145/3448016.3457244
https://doi.org/10.1145/3318464.3389701
https://doi.org/10.14778/2752939.2752940
https://doi.org/10.1145/3318464.3389753
https://datalab.cs.pdx.edu/niagara/pstream/nexmark.pdf
https://doi.org/10.1145/2882903.2903740
https://doi.org/10.1179/sre.1975.23.176.88
http://sites.computer.org/debull/A14mar/p31.pdf
https://doi.org/10.1145/2384716.2384723
http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf
https://www.ronpub.com/ojiot/OJIOT_2020v6i1n07_Zeuch.html

	Abstract
	1 Introduction
	2 The Curse of Query Compilation
	3 Query Compilation with Nautilus
	3.1 Architecture of Nautilus
	3.2 Extensibility

	4 Operator Implementation Interface
	4.1 Pipeline Evaluation
	4.2 Imperative Operator Implementation
	4.3 Integrating Data Structures

	5 Trace-based Just-in-Time Compilation
	5.1 Tracing Data-Processing Queries
	5.2 Nautilus IR
	5.3 Compilation Backends
	5.4 Optimizations

	6 Evaluation
	6.1 Experimental Setup
	6.2 System Comparison
	6.3 Compilation Backends
	6.4 Discussion

	7 Complexity Analysis
	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

