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ABSTRACT
The Internet of Things provides applications with data streams
frombillions of sensor devices in real-time. Usually, sensor devices
servemultiple queries simultaneously despite having limited com-
putational capabilities. This paper presents a solution for reducing
the number of data reads and transmissions by increasing the
potential for sharing reads among concurrent streaming queries.
Existing read-scheduling techniques on sensor nodes dynami-
cally adjust the data-acquisition rate depending on the data’s
variability. However, they leave the definition of read-time toler-
ances to the user. Such read-time tolerances are crucial for sharing
reads among queries. We extend previous work by presenting a
generally-applicable algorithm that defines read-time tolerances
and adapts them on-the-fly depending on observed data charac-
teristics. We evaluate our solution on real-world data and show
that it reduces the sensing error by up to 60% compared to existing
approaches with the same number of data reads. Respectively, our
technique reduces the number of data reads to achieve the same
sensing error as existing techniques. To the best of our knowledge,
we are the first to automatically set and tune read-time tolerances
to reduce sensor readings and data transmissions on sensor nodes.

1 INTRODUCTION
With the advance in communication and information technolo-
gies, we can easily access the internet with laptops, tablets, smart-
phones, and other mobile devices. The network of smart devices,
vehicles, and other network-attached sensors forms the Internet
of Things (IoT) [16]. In a general IoT setup, multiple sensors are
attached to a single device, the sensor node. The sensor node
gathers data from the attached sensors and then transmits them
to the Stream Processing Engine, enabling it to answer queries.

IoT applications make decisions in real-time based on dynam-
ically changing surroundings. With a vast amount of sensors and
the need for real-time data processing, several efficient data ac-
quisition and transmission techniques are proposed to provide
data streams to applications [8, 11, 21, 22, 26].

There exist several solutions for making data acquisition and
transmission from sensor nodes more efficient. These solutions
aim at reducing the number of sensor reads conducted (adaptive
sampling) or values transmitted (adaptive filtering) [8]. The key
idea of adaptive sampling is to modify the read-time frequency
based on the recent history of sensor readings. If the values read
from the sensor behave unexpectedly (i.e., have a high variability),
samples are collected at a higher rate. In contrast, if values barely
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change, the sampling rate is reduced.Adaptivefiltering techniques
reduce the number of transmitted values by discarding values
that evolve predictably. Adaptive sampling and adaptive filter-
ing usually operate on a per-query basis. Instead, multi-query
read-sharing saves transmissions by scheduling reads that satisfy
multiple concurrent queries simultaneously.
Adaptive sampling and adaptive filtering techniques have to be
selected and configured in accordance with the corresponding
query’s data demand, i.e., reflecting the consumer’s sensitivity to
observing changes in the data. It is crucial to note that queries
may possess different data demands. For example, the adaptive
sampling technique AdaM [23] reacts very fast to abrupt value
changes, while FAST [6] incorporates differential privacy features.
This is where multi-query optimization becomes necessary.
In previous works, we propose considering the queries’ data de-
mand during multi-query optimization by combining adaptive
sampling and filtering techniques with multi-query read sharing
in a unified framework [9, 20]. User-defined stateful functions
(e.g., adaptive sampling techniques) iteratively suggest a query’s
read-times, and a multi-query read-scheduler exploits read-time
tolerances around suggested read-times for sharing reads among
queries respecting their data demand.

Figure 1 shows an overview of these two steps of read-time sug-
gestion and read-fusion. Aswe can see from steps 2 and 3 , spec-
ifying read-time tolerances is essential to read-fusion. However,
it is hard for users to manually specify and tune such tolerances.
While well-known adaptive sampling techniques provide the de-
sired read-time, they do not define tolerances. Ideally, tolerances
for each read request should adjust automatically based on cur-
rent data characteristics. Intuitively, tolerances should increase
if values remain constant or follow an expected trend. Tolerances
should shrink if sensor values change rapidly.

In this paper, we introduce an Adaptive Read-Time Tolerance
Controller (ARTC), a general algorithm that adjusts read-time
tolerances on-the-fly, based on the recent history of sensor read-
ings. ARTC enhances arbitrary adaptive sampling techniques
with automated control of read-time tolerances. Such read-time
tolerances enable the sharing of sensor values among multiple
queries on the same sensor node and thus lead to reading and
transmission savings in distributed sensor networks. We design
our solution to be generally applicable – independent of the al-
gorithm defining the desired read-times. Therefore, we divide
the task of setting read-time tolerances into two parts: Iteratively
adapting the read-time tolerance’s diameter, and shifting the read-
time tolerance interval around the desired read-time: We capture
statistics on the data’s variability based on which we adapt the
read-time tolerance. We use a proportional-integral-derivative
controller (PID controller) [2, 3], which is a commonly used form
of feedback control [4] to shift the read-time tolerance.
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Figure 1: Overview of Optimized On-Demand Data-Streaming from Sensor Nodes [20]: 1 The sensor node’s scheduler re-
ceives the data demand of new queries. 2 A query’s data demand defines the next (desired) read-time at which it requires
thenext sensor readingandoptionally, a read-time tolerance. 3 The schedulerdetermines the time for thenext sensor read-
ing , fusing requests, if possible. Thedevicewakesup to 4 read a value from the sensor, and 5 transmits it to the receivers.

Our implementation is available as an open-source project1.
We evaluate our solution by simulating sensor sharing based
on multiple real-world IoT datasets. We analyze the error and
the read-time tolerance induced by read-sharing for different
configurations of our algorithm, compare it to setups with fixed
read-time tolerances, and show that our solution outperforms
fixed read-time tolerance specifications.

The remainder of this paper is structured as follows: We first
present our solution in Section 2, which we evaluate in Section 3
on three real-world datasets. After discussing Related Work in
Section 4 we conclude in Section 5.

2 ADAPTIVE READ-TIME TOLERANCE
This section explains how our adaptive read-time tolerance con-
troller ARTC adapts the read-time tolerance to the sensed data’s
variability. We first showcase how to use ARTC in Section 2.1 and
subsequently present our solution’s internals in Section 2.2.

2.1 The User’s Perspective
The user configures ARTC with two parameters: Firstly, 𝐸, in-
dicating the permissible inaccuracy in the data-representation
relative to the data’s average magnitude. Secondly, the optional
parameter dMax, which specifies a maximal read-time tolerance.

It is essential to highlight that the complexity of using ARTC is
transparent to users. They can define streaming queries in declar-
ative languages to the Stream Processing Engine (SPE). The user
parametrizes ARTC as part of the query as sketched below:

SELECT [t, speed, position] // SENSOR IDENTIFIERS
FROM [bus 1] // SENSOR NODE IDENTIFIER
USING [AdaM] // READ-TIME SUGGESTION ALGORITHM
WITH [ARTC(E=0.1)] ON [speed] // CONFIGURATION ARTC

As outlined in Figure 1, users can submit queries to the SPE,
which then forwards the data demand specification and involved
sensors to the specified sensor device 1 . The device can thus
schedule reads according to the specified data-requirements 3
and to dispatch the data stream to the user 5 . The user receives a
data stream

(
𝑡𝑖 ,speed𝑖 ,position𝑖

)
𝑖∈N until terminating the query.

2.2 Architecture
We first show how our solution integrates within the multi-query
read-scheduling framework executed on the sensor device [20]
and then present the internals of ARTC. Table 1 summarizes the
newly introduced nomenclature.

1https://github.com/TU-Berlin-DIMA/ARTC

Internal Architecture. Once the sensor device receives at least
one query from the SPE, it schedules reads, as shown in Algo-
rithm 1. For each new query, the sensor device first performs a
read in Line 4. The sensor device then reports the value 𝑣 gathered
from the sensor at time 𝑡 back to the client who issued the query. It
then feeds the read-time and value into the read-time suggestion
algorithm (Line 7), which generates the next desired read-time 𝑡𝐷 .
In the example query in Section 2.1, the read-time suggestion is
performed through the adaptive sampling algorithmAdaM. Then,
we forward the desired read-time and the last sensor reading to
the read-time tolerance algorithm (Line 7), which computes a
read-time tolerance by specifying interval boundaries 𝑡𝑠 and 𝑡𝑒
that enclose the desired read-time. Together with the desired read-
time 𝑡𝐷 , the interval boundaries constitute the next read request
of the query. Lastly, the multi-query read-scheduler schedules
reads according to all read requests.We refer the reader to our pre-
vious work for details on the optimizations the multi-query read
scheduler performs anddifferent optimization objectives [20]. The
sensor device reduces its energy consumption by then sleeping
until the next read is due. The process of updating the read request
is repeated for all queries which received the last sensor reading.

Adaptive Read-Time Tolerance Controller (ARTC). A read-time
tolerance algorithmhas tomeet the following requirements: (i) De-
spite advances in hardware technologies, sensor devices are still
restricted in computational capabilities compared to sinks. As
they need to schedule reads very precisely and are often bat-
tery-powered, the algorithm has to be energy-efficient. (ii) The
algorithm has to adapt to changes in the distribution of the data
quickly. Otherwise, the user misses important events. (iii) The
algorithm has to be easy to configure and should not be entirely
dependent on the read-time suggestion algorithm.

As a lightweight means of keeping track of the distribution of
gathered sensor values, we use the iterative Probabilistic Expo-
nentiallyWeightedMoving Average (PEWMA) algorithm.We use
two instances of PEWMA; firstly, we monitor the distribution of
the magnitude of sensor readings ∥𝑣 ∥2. We refer to the probabilis-
tic moving average by `𝑣 and to the estimated standard deviation
of the used normal distribution by 𝜎𝑣 . We use the second instance
of PEWMA tomonitor moving average `𝛿 and standard deviation
𝜎𝛿 of the difference between consecutive read-times 𝛿 := ∥𝑣−𝑣𝑙 ∥2.
In order to be less dependent on the read-time suggestion algo-
rithm, we divide our solution into two parts: (1) the adaptation of
the read-time tolerance Δ based on the predictability of the data
distribution and (2) shifting of the read-time interval 𝑠 ∈ [−0.5,0.5]
based on the value deviation between consecutive sensor readings
as shown in Equation 1:
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Algorithm 1:Multi-query read-sharing algorithm.
1 𝑡 = now(); involvedQueries = newQueries; u = {};
2 while running do
3 sleepUntil(𝑡 );
4 v = sensor.read();
5 involvedQueries.forwardToSink(𝑡 , v);
6 while query in involvedQueries do
7 𝑡𝐷 = readTimeSuggestion.next(𝑡 , 𝑣);
8 𝑡𝑠 , 𝑡𝑒 = readTimeToleranceAlgorithm.next(𝑡 , 𝑣 , 𝑡𝐷 );
9 u[query] = (𝑡𝑠 , 𝑡𝐷 , 𝑡𝑒 );

10 end
11 𝑡 , involvedQueries = mqrs.select(u);
12 end

𝑡𝑠 =𝑡𝐷 +Δ ·
(
𝑠− 1

2

)
, 𝑡𝑒 =𝑡𝐷 +Δ ·

(
𝑠+ 1

2

)
(1)

In the next sections, we discuss separately how read-time toler-
ances Δ and shifts 𝑠 are computed.

Adaptation of read-time tolerance. We use the variation of 𝛿
to assess the predictability of the distribution. If the variation
exceeds the threshold 𝐸 specified by the user,

𝜎𝛿 >𝐸 ·`𝑣
⇔ 𝜎𝛿−𝐸 ·`𝑣 >0, (2)

we reduce the read-time tolerance Δ by the damping factor in
Equation 3. This way, it decreases exponentially in the number
of consecutive times that the variation exceeds 𝐸.

Δ←Δ · 1
2
. (3)

Otherwise, we increase the read-time tolerance by a value pro-
portional to the difference between the user-indicated deviation
𝐸 and 𝜎𝛿 , which we denote the step-size 𝛿𝐸 . In order to make the
step-size independent of the magnitude of both 𝐸 and the sensor
values, we scale the threshold by the multiplicative inverse of 𝐸
and `𝑣 and define the step size in Equation 4.

𝛿𝐸 :=
𝜎𝛿−𝐸 ·`𝑣
𝐸 ·`𝑣

=
𝜎𝛿

𝐸 ·`𝑣
−1. (4)

Shifting of read-time interval. We shift the read-time interval
around the desired read-time 𝑡𝐷 to reduce the algorithm’s depen-
dence on the read-time suggestion algorithm’s performance. We
use a PID controller with setpoint 𝐸 to assess whether the de-
viation between consecutive sensor readings is within the range
specified by the user. That way, we obtain a long-term estimation
of the read-time suggestion algorithm’s performance and exert
limited control over the read-time difference. We scale the con-
troller’s output with a factor of 0.1 we determined empirically,
which achieves good results for all evaluated datasets.

Complete Algorithm. The overall algorithm is summarized in
Algorithm 2:We restate Condition 2 in terms of𝛿𝐸 and also ensure
the user-defined boundaries of Δ and the range of 𝑠 .

3 EXPERIMENTAL EVALUATION
In this section, we evaluate ARTC on three real-world IoT datasets.
We picked the different datasets to portray various data character-
istics, which we lay out in Section 3.1. We then introduce our ex-
perimental setup in Section 3.2, present the experiments and their
results in Section 3.3, and close with a discussion in Section 3.4.

Variable Description
𝑡,𝑡𝑙 ,𝑣,𝑣𝑙 Current / last sensor reading (time and value).
𝑡𝑠 ,𝑡𝑒 Read-time tolerance interval boundaries.
𝑡𝐷 ∈ [𝑡𝑠 ,𝑡𝑒 ] Desired read-time.
𝛿 eukl. distance between consecutive values.
`𝑣,𝜎𝑣
`𝛿 ,𝜎𝛿

PEWMA and estimated standard deviation of
the magnitude of 𝑣 , respectively 𝛿 .

Table 1: Overview of subsequently used nomenclature.

PEWMA AdaM PID Controller ARTC
𝛼 =0.5, 𝛽 =0.5,

𝑑init=20
𝛾 =0.2 𝑃 =2, 𝐼 =2𝑒-3,

𝐷 =0.3
dMax=175

Table2:ConfigurationofAdaM’sandARTC’s components.

3.1 Datasets
We evaluate our solution on three IoT sensor datasets [17]. We
provide a brief description for each dataset and state which of the
multiple sensors in the dataset we use for our experiments.

The football monitoring dataset [14] provided within the
scope of the ACM DEBS 2013 Grand Challenge consists of data
gathered during a football training game at the Nuremberg Sta-
dium in Germany. We replay the football’s absolute velocity in
𝑚/𝑠 , which is available at 2000 Hz for the match’s first half-hour.
We evaluate our solution on this dataset as it is very volatile, and
the speed of the football spikes abruptly when kicked by a player.

Thedailyandsportsactivitiesdataset [1] containsmultiple
time-series, constituting different individuals performing a total
of 19 activities such as sitting, standing, and jumping. We replay
data from the torso acceleration sensor in𝑚/𝑠2, which is available
at 25Hz frequency for 5minutes per person and activity.We select
two daily activities sitting and standing, and two sports activities
descending stairs and exercising on a stepper, and concatenate
the corresponding time-series. As different activities alternate
in the resulting time series, we can observe a drastic shift in the
distribution of values each time the performed activity changes.

The gas dataset [7] holds concentration levels of dynamic gas
mixtures. The data is collected continuously at a frequency of 100
Hz, and we use the first hour of the available data. We replay the
gas mixture of ethylene and CO, and the unit of the measurement
is parts per million (ppm). The variability in this dataset is low, as
the distribution of the different chemicals only changes gradually.

3.2 Evaluation Setup
In a production setup, a read-sharing algorithm’s performance
on a sensor device is measured by counting the number of saved
reads of the corresponding query under heavy load. However,
this quantity largely depends on the configuration and number
of concurrent queries. To assess the performance of read-sharing
more objectively, we measure the suggested read-time tolerance
Δ instead, while operating only a single query.We simulate heavy
load by sampling at random within the proposed read-time tol-
erance to obtain a realistic view of the induced error. For each
experiment, we conduct multiple runs and combine the results.

We record two performancemeasures during the conducted ex-
periments to evaluate the functionality and effectiveness of ARTC.
Firstly,we keep track of the average read-time tolerance `Δ, which
indicates the read-sharing potential enabled by the algorithm for a
total of𝑀 suggested read-time tolerances Δ𝑖 : Secondly, we record
the induced error for each point in time 𝑡 , i.e., the distance between
the last performed sensor reading 𝑣 prior to 𝑡 and the actual sensor
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Algorithm 2: ARTC.next
Parameters :setpoint 𝐸, maximal interval diameter 𝑑𝑀𝑎𝑥

State :shift 𝑠 =0, diameter Δ=0, last value 𝑣𝑙
Input: read-time t, value v, desired read-time t𝐷
Output: next interval borders [𝑡𝑠 ,𝑡𝑒 ],

1 `𝑣 = pewma.next(∥𝑣 ∥2);
2 if 𝑣𝑙 is set then
3 `𝛿 , 𝜎𝛿 = pewmaDiff.next(∥𝑣−𝑣𝑙 ∥2);
4 s += pid.next

(
`𝛿
`𝑣

)
·0.1;

5 𝛿𝐸 = 𝜎𝛿
`𝑣 ·𝐸 −1;

6 if (𝛿𝐸 >0)Δ·= 1
2 else Δ−=𝛿𝐸 ;

7 ensure s ∈
[
− 1
2 ,

1
2
]
and Δ∈ [0,dMax];

8 else
9 Δ=0;

10 end
11 𝑡𝑒 ,𝑡𝑠 =𝑡𝐷 +Δ · (𝑠± 1

2 );
12 𝑣𝑙 = v;
13 return 𝑡𝑠 ,𝑡𝑒 ;

value 𝑣𝑖 at time 𝑡 . We label 𝜖 the average error over the entire
experiment trace, and denote the error’s moving average with
window size 𝑘 in percent of the data’s average magnitude via 𝜖𝑘 .

During all conducted experiments, we compare the induced
error 𝜖 of ARTC to the error of fixed read-time tolerance algo-
rithms that we configured to achieve the same average read-time
tolerance `Δ as ARTC.We use the read-time suggestion algorithm
AdaM throughout the experiments, and only vary the parameter𝐸
of ARTC and the fixed read-time tolerance algorithm accordingly.
The parameters that are fixed throughout the experiments are
provided in Table 2.

3.3 Experimental Evaluation
We first present the evaluation on an experiment trace on an
excerpt from the activities dataset and then provide quantitative
results for all three datasets.

Experiment Trace. Figure 2 shows the performance of ARTC
through an experiment trace excerpt from the activities dataset.
We execute a total of three query-configurations on the dataset
(i) A baseline query without read-sharing, which executes only
the read-time suggestion algorithm AdaM, (ii) ARTC configured
with 𝐸 = 0.05, and (iii) A fixed read-time tolerance algorithm
configured with Δ=0.4 seconds (s).

In Figure 2a, we visualize the raw sensor data at the highest
possible rate as black dots. The representation of the sensor pro-
vided through configurations (ii) and (iii) is visualized as solid
lines, which indicate the last performed sensor reading 𝑣𝑖 at any
given point in time. At any point in time, the difference between
the solid lines and the data points is the error induced by the
respective query. Figure 2b visualizes the moving average of the
relative error over one second and the read-time tolerance Δ𝑖 .

During the visualized experiment trace, a person performs
three operations: standing in an elevator still until A , exercising
on a stepper until B , and sitting. Every time the performed activ-
ity changes, we observe a dramatic change in the distribution of
the replayed data.While exercising, the variability of the replayed
torso acceleration measurements increases significantly.
At the beginning of the experiment, the variability of the data is
relatively low. Both the fixed read-time tolerance algorithm and
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(b) Diameter Δ and 1-second moving average of the error 𝜖 induced
by ARTC, the fixed read-time tolerance algorithm, and without
read-sharing (black) altogether. During volatile phases, ARTC
decreases Δ and thus reduces 𝜖 to the error without read-sharing.

Figure 2: Experiment trace of ARTC and baselines.

ARTC achieve a similar error 𝜖 of less than 5%. However, during
this low variability phase, ARTC enables a read-time tolerance
larger than 2.4s, which is more than six times larger than those
achieved by the fixed read-time tolerance algorithm.
A brief spike in the torso acceleration precedes the individual’s
exercising routine at the 5-second mark, which leads to ARTC
reducing the read-time tolerance. Once the torso acceleration
starts to oscillate ( A ), ARTC reduces the read-time tolerance to
a minimum, such that the error levels with those induced by the
read-time tolerance algorithm AdaM. During this phase, the read-
time tolerance proposed by the fixed algorithm is higher than
those proposed by ARTC at the cost of an error 𝜖 of approximately
50% of the data’s magnitude, while ARTC causes no additional
error. Once the individual sits ( B ), ARTC increases the read-time
tolerance again.

By controlling the read-time tolerance based on the data’s vari-
ability, ARTC is able to outperform the fixed read-time tolerance
algorithm in both depicted performance metrics: When consider-
ing the entirety of the depicted trace, the read-time tolerance of
the fixed read-time tolerance algorithm is approximately doubled
by ARTC, while ARTC can reduce the average error by 75%.

Quantitative Experiments. To assess the performance of ARTC
under different circumstances, we run multiple experiments on
the gas, activities, and football datasets. We compare ARTC to
fixed read-time tolerance algorithms achieving the same average
read-time tolerance Δ in Figure 3. Throughout the experiments,
we observe that ARTC outperforms or at least levels the fixed
read-time tolerance algorithm. Overall, ARTC outperforms the
fixed read-time tolerance algorithm by the largest margin on the
activities dataset: on average, it reduces the error by 31% com-
pared to approximately 15% on the other two datasets. However,
the additional error induced by ARTC for enabling read-sharing is
smallest on the gas dataset (1.3 percentage points for Δ>4s). This
relatively small induced error reflects the relatively steady nature
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(c) Activities Dataset

Figure 3: Performance of queries with different configurations of ARTC and the two baselines on the introduced datasets.

of the gas data. We discuss the experimental results in detail for
each dataset in the following paragraphs.

The gas dataset (Figure 3a) contains sensor values with the low-
est variability of all three datasets. The error of the read-time sug-
gestion algorithm AdaM without read-sharing is approximately
1.4% of the data’s average magnitude. With the configurations of
ARTC visualized in Figure 3, large read-time tolerances of up to
4.75s are possible.
While small deviations on the dataset can only be captured when
enabling read-sharing only to a limited extent of 6ms, we observe
that ARTC is able to allow for large read-time tolerances of 2−5s
without a significant increase in the average error. On the other
hand, the fixed read-time tolerance algorithm’s performance de-
teriorates, such that the error of the fixed algorithm is 30% larger
than those caused by ARTC for a read-time tolerance of 4.75s.
The additional error of read-sharing through ARTC stays below
the error induced by the read-time suggestion algorithm for all
executed configurations.

The football dataset (Figure 3b) has the highest variability of
all presented datasets. The error of the read-time suggestion al-
gorithm alone is 13% of the data’s average magnitude. As most of
the configurations of ARTC indicate an average error below or at
the same level as the error of the read-time suggestion algorithm,
read-sharing is only enabled to a very limited extent, up to 3ms.
On this dataset, we observe that ARTC is able to reduce the error
of the read-time tolerance algorithm slightly by up to 13% when
enabling read-sharing to a limited extent. For read-time tolerances
of 1.5ms, the error of the query configured with ARTC (15.8%)
draws nearer to those of the fixed algorithm (16.7%). For a read-
time tolerance of 3ms, the performance of both algorithms levels.

The read-time suggestion algorithm on the activities dataset
(Figure 3c) has an error of 4.4%, matched for ARTC up to a read-
time tolerance of 280ms. The executed configurations of ARTC
achieve a read-time tolerance of up to 1.5s. On this dataset, ARTC
outperforms the fixed read-time suggestion algorithm by the
largest margin. ARTC is able to adapt to changes in the variabil-
ity of the data during the experiment that occur whenever the
individuum starts performing a different activity. While the error
of the fixed read-time tolerance algorithm is approximately 90%
larger than those of ARTC for a read-time tolerance of 280ms,
the margin between the performance of both algorithms contin-
uously shrinks to 20% for a read-time tolerance of 1.5s. This is
because the algorithm misses small fluctuations in the data and
takes a long time to adapt to brief periods of activity, which only
last for several seconds.

3.4 Discussion
The evaluation of the single trace experiment executed on the
activities dataset shows that ARTC can quickly adapt to a change
in the distribution of values gathered from the sensor. During the
quantitative analysis conducted on the three different datasets,
ARTC outperforms the corresponding fixed configuration. For
our experiment configurations, it is even possible to enable read
sharing to a limited extent without a detrimental effect on the
accuracy of the data representation altogether.

4 RELATEDWORK
To the best of our knowledge, we are the first to propose a general,
adaptive demand-based read-time tolerance controller. However,
the underlying problem of reducing the number of reads and
transmissions has been studied from various angles. Therefore,
we first present existing work on read- and transmission sharing.
We then present adaptive sampling techniques, as they are an
integral building block of ARTC and share a similar objective.

Read- and transmission sharing. TinyDB [12] introduces the
concept of acquisitional query processing (ACQP) to control the
sampling frequency during Single-Query Optimization. ACQP
arranges database operators and sensor readings in a common
processing pipeline. Operators with low selectivity reduce the
acquisition frequency by filtering out sensor readings before suc-
ceeding read operations. However, TinyDB only allows for peri-
odic sampling algorithms at the processing pipeline’s source.

Multiple approaches known from the literature conduct spa-
tial resource sharing, i.e., optimize the set of deployed queries
through a global view into a single query. Li et al. [10] allow the
user to define query priorities and -deadlines. They fuse aggre-
gate queries accordingly, perform utility-driven compression, and
global transmission-scheduling to save reads and transmissions.
However, they do not adapt to the variability of the distribution
in scheduling and fusing sensor readings.

As opposed to spatial resource sharing, data sharing techniques
perform local optimizations using a single sensor reading for mul-
tiple queries [13, 24, 25]. Tavakoli et al. [18] model the overlaps
of tolerance intervals in an online evolving interval-cover graph,
which they use to determine read-times. All four approaches
are unable to adapt to changes in the distribution of the data
both in scheduling reads and in computing read-time tolerances.
We advanced data sharing in the context of adaptive sampling
techniques [19, 20]. To that end, we proposed to combine demand-
based adaptive read-time suggestion and read-time fusion in a
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single framework. We were able to report savings of 87% in reads
and transmissions, which we further increase through ARTC.

Adaptive sampling tailors the sampling frequency to the dis-
tribution of the data [8]. Padhy et al. propose a confidence-based
adaptive sampling method called Utility-based Sensing and Com-
munication (USAC) [15]. They apply linear regression to predict
the next sensor value with a bounded error-range, the so-called
confidence interval (CI). If a value is outside the CI, the sensor
starts sampling at maximal frequency. Otherwise, the frequency
decreases exponentially by a factor 𝛼 ∈ [0,1] until it reaches the
minimum sampling frequency.

Aiming to provide an energy-efficient solution in the realm of
Big Data and IoT, Trihinas et al. propose the Adaptive Monitoring
Framework (AdaM) [23]. They use an ad-hoc forecasting method
called PEWMA to produce one-step forecasts, which they then
use to compute the metric stream’s variability.

Fan et al. propose Filtering and Adaptive sampling for Differ-
entially Private Time Series Monitoring (FAST) [6]. They define
a so-called privacy budget to add Laplace noise to the original
observations to achieve differential privacy. Then they generate
estimates, the quality of which is then used by the sampling com-
ponent to adjust the sampling rate using a PID controller. Com-
pared to AdaM and USAC, FAST is slower to adapt to changes in
the distribution of the data but achieves comparable results.

We design our adaptive read-time tolerance controller ARTC
using ideas from all three of the aforementioned adaptive sam-
pling algorithms. We use a PID controller [3] in order to assess
whether the read-time suggestion algorithm achieves the data-
quality ARTC targets. Similar to AdaM, we use PEWMA [5] in
order to monitor the distribution of samples. We use the idea
presented by Padhy et al. of decreasing tolerances rapidly if the
desired data accuracy is missed, which enables us to adapt to
changes in the distribution quickly.

5 CONCLUSION
We previously developed a multi-query read-scheduling algo-
rithm that enables adaptive sampling in a sensor network [20].
In this paper, we now extend our work by proposing the easy
to configure adaptive read-time tolerance controller ARTC. Our
experimental evaluation shows that ARTC tailors the extent of
read-sharing to the data-accuracy demands of end-applications.
ARTC is generally-applicable for defining read-time tolerances
when scheduling sensor read-times. Thus, it enables multi-query
optimization through sharing sensor readings for arbitrary adap-
tive sampling techniques. We evaluate ARTC on three real-world
IoT datasets with different data characteristics and shifts in the
data distribution. Our solution reduces the error in the repre-
sentation by up to 60% compared to fixed read-time tolerance
algorithms by adapting to the sensed data’s variability. ARTC not
only reduces the number of reads and transmissions while achiev-
ing the same sensing error as existing techniques, but also enables
multi-query read-sharing for queries issued by users without
domain-knowledge. We make our code and evaluation available
open-source. We also provide detailed instructions on how to
execute custom experiments. In our previous work, we allow the
user to define a so-called penalty-function [20] to further increase
the read-sharing potential under specific circumstances. We plan
to extend our solution to adaptively tune such penalty-functions
based on the data’s variability as well.
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