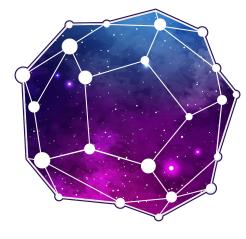


of Learning and Data

German **Research Center** for Artificial Intelligence



NebulaStream: Complex Analytics Beyond the Cloud

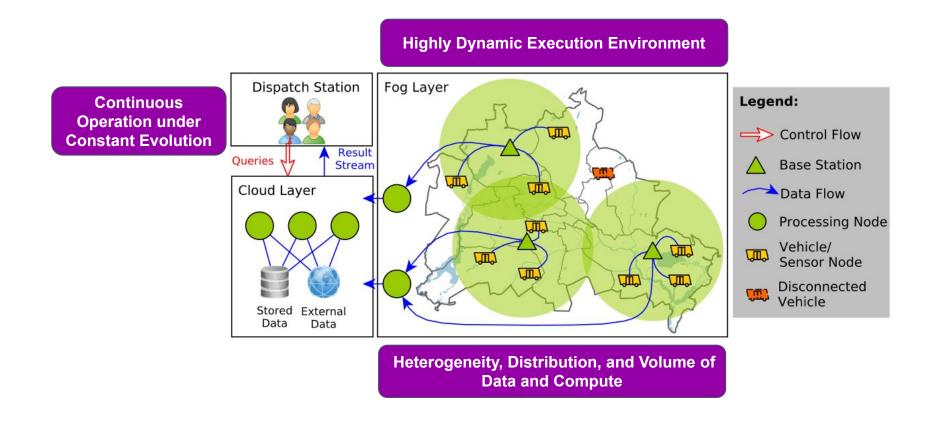
Steffen Zeuch, Eleni Tzirita Zacharatou, Shuhao Zhang, Xenofon Chatziliadis, Ankit Chaudhary, Bonaventura Del Monte, Dimitrios Giouroukis, Philipp M. Grulich, Ariane Ziehn , Volker Mark

What is this paper about

Core features enable the next generation of IoT applications but are not yet supported by state-of-the-art systems.

Domain specific features

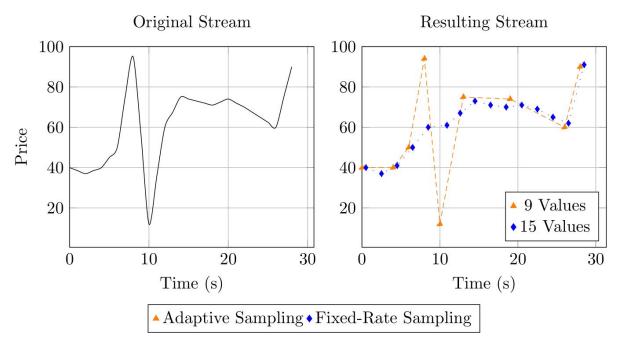
enable a richer set of applications over an IoT data management platform such as NES.


A general-purpose, end-to-end data management system for the IoT.

Smart Cities

- Each IoT device creates a data stream
- Example city: Berlin
 - Street lights ~200.000
 - Traffic lights **~2.000**
 - Traffic sensors **~110.000**
 - Sensors in vehicles ~1.200.000
 - Smartphones ~3.770.000
 - 0

Upcoming IoT applications


Core Features

Core features enable the next generation of IoT applications but are not yet supported by state-of-the-art systems.


Adaptive Handling of Sensor Data Streams

- General Description: Adaptive sensor data handling allows scaling to large number of nodes and sensors while avoiding resource misuse.
- State-of-the-Art Systems and Their Limitations:
 - Assumes homogeneous hardware
 - Focuses on disseminating a single query
 - Does not exploit all sensor node capabilities
- Enabling Emerging IoT Applications:
 - Treat sensor nodes as first class components
 - Keep in check the dynamicity of the data while retaining high-quality representation of results
 - Enable more precise sampling for IoT applications

Massive Scalability

- **General Description:** Support thousands of queries on millions of heterogeneous and distributed data streams.
- State-of-the-Art Systems and Their Limitations:
 - Cloud-based systems are limited by the amount of data it can receive from IoT devices into cloud.
 - Fog-based systems process data closer to IoT devices but have limited computation resources.
 - Sensor-based systems provide only minimal functionality for data analytics.
- Enabling Emerging IoT Applications:
 - Large scale, real-time applications should leveraging sensors, fog, and cloud resources to process massive amount of geo-distributed IoT data streams, e.g., connected cars, smart cities.

Support for Heterogeneous Devices

- **General Description:** IoT environments consist of a wide range of diverse processing devices. Resource utilization is crucial for efficiency.
- State-of-the-Art Systems and Their Limitations:
 - Current systems are either hardware-oblivious or build for one specific hardware.
 - No system exploit the heterogeneous devices efficiently.
 - IoT environments introduce new challenges, e.g., device diversity and limited energy budget.
- Enabling Emerging IoT Applications:
 - Process data most efficiently and where it is generated to improve the overall IoT system efficiency. Thus, enabling larger IoT infrastructures such as smart cities.

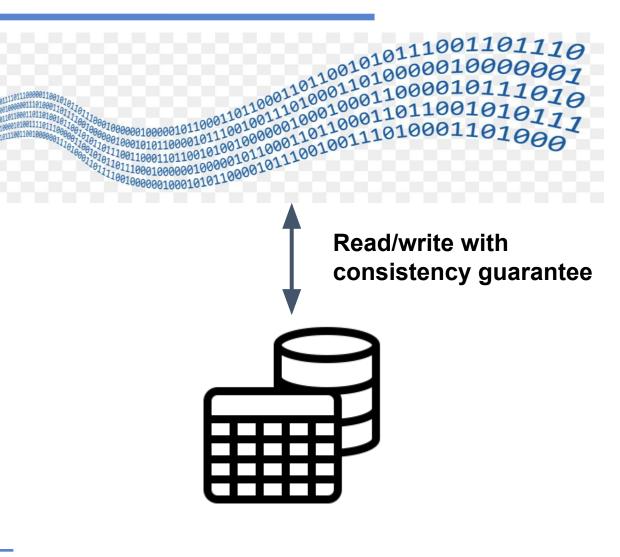
Delivery guarantees

- General Description: IoT may require new forms of delivery guarantees beyond at-least-once or exactly-once delivery.
- State-of-the-Art Systems and Their Limitations:
 - Cloud-tailored solutions tailored with persistent storage, e.g., Kafka
 - Specific solutions for certain IoT scenarios
- Enabling Emerging IoT Applications:
 - Trade-off consistency, availability, and resource consumption
 - Temperature monitoring: at-most-once
 - Accident detection: at-least-once
 - Smart purchases: exactly-once

Mathias Verraes @mathiasverraes L+ Follow

There are only two hard problems in distributed systems: 2. Exactly-once delivery 1. Guaranteed order of messages 2. Exactly-once delivery

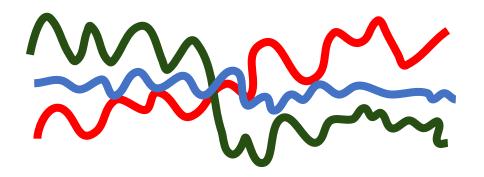
RETWEETS 6,775	LIKES 4,727	🕸 🗱 🎮 🏈 🜉 🌇 🔤 🜌 📷	
10:40 AM -	14 Aug 2015		
6 9	13 6.8K	🤎 4.7К 🔛	


Secure & Private Stream Processing

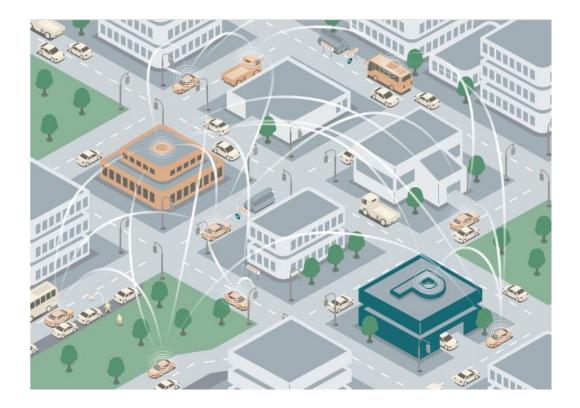
- General Description: IoT devices are vulnerable to being attacked leading to secure and private issues.
- State-of-the-Art Systems and Their Limitations:
 - Prior systems (e.g., StreamBox-TZ, TimeCrypt) are not designed for IoT environments and their specific characteristics.
- Enabling Emerging IoT Applications:
 - Process confidential data by providing security and integrity guarantees in sensitive areas of smart city such as smart medication.

Transactional Stream Processing

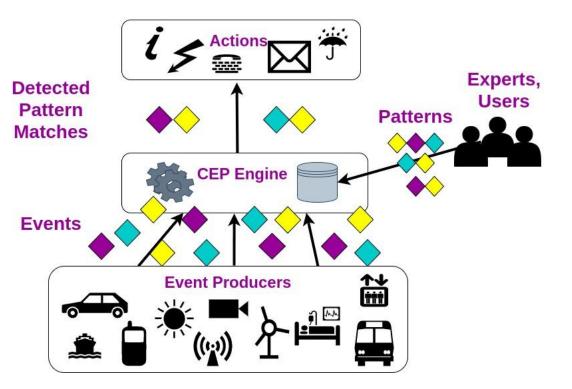
- **General Description:** SPEs with transactional state management would relieve the burden of managing state consistency from the users.
- State-of-the-Art Systems and Their Limitations:
 - Common problems in the IoT environment, e.g., transient node errors or unreliable connections, make existing solutions hardly applicable.
- Enabling Emerging IoT Applications:
 - Stream applications that require maintaining shared mutable states, e.g., self-driving vehicle monitoring as part of smart city development.


Domain Specific Features

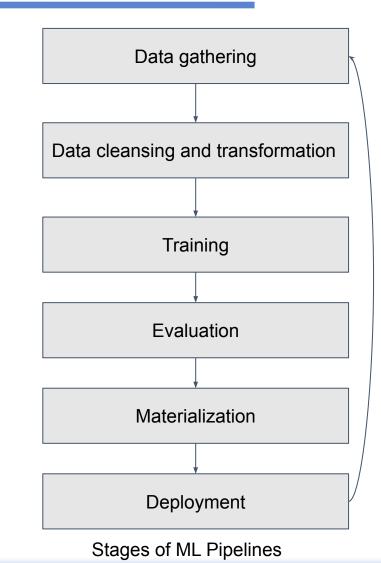
Domain specific features enable a richer set of applications over an IoT data management platform such as NES.


Digital Signal Processing (DSP)

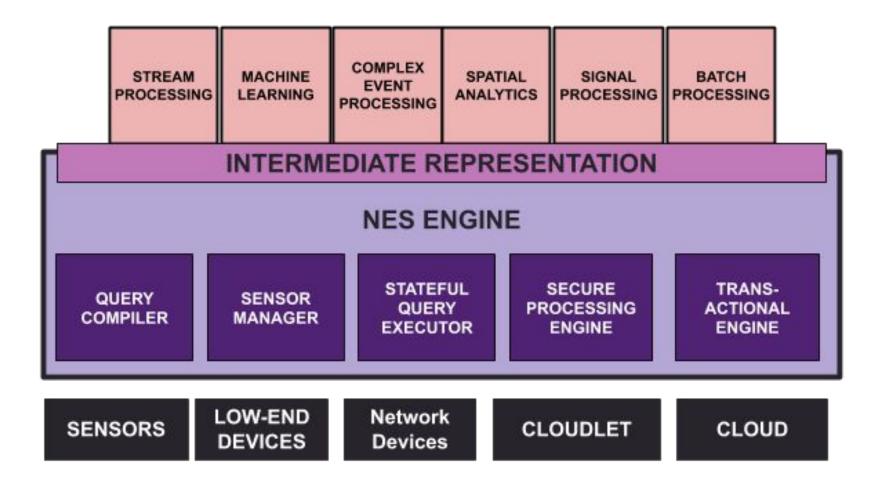
- **General Description:** IoT applications mix relational and signal logic, e.g., filters, joins, group-by aggregates, interpolation for missing sensor values, noise reduction filters, FFT spectral analysis.
- State-of-the-Art Systems and Their Limitations:
 - No distributed SPE with support for DSP.
 - Memory and compute intensive DSP operators are unsuitable for low-end fog devices.
 - Non-commutative DSP operators require event-ordering, which is hard in the IoT.
- Enabling Emerging IoT Applications:
 - Tightly integrating DSP operators in the execution engine would enable new IoT applications (e.g. gunshot detection from audio signals in a city)


Efficient Spatial Analytics

- **General Description:** Phenomena in the IoT are location-dependent and thus IoT applications should offer analytics on them.
- State-of-the-Art Systems and Their Limitations:
 - No, or very limited support for spatial queries
 - Cloud-tailored solutions
 - Inefficient use of resources
- Enabling Emerging IoT Applications:
 - Transportation: driverless vehicles and connected cars
 - Public safety: networks of connected cameras or acoustic sensors
 - Health: wearable health trackers


Complex Event Processing (CEP)

- **General Description:** CEP in the IoT would enable users to feed system with knowledge, i.e., patterns, and automate decision making.
- State-of-the-Art Systems and Their limitations:
 - Rely on central components and serial processing model which prevents large scale processing.
- Enabling Emerging IoT Applications:
 - Scalable CEP would enable future IoT applications such as:
 - Smart hospitals with private fogs can contribute to a public smart city query (COVID-19 cases)
 - Smart street lamps
 - Traffic flow management



Machine Learning

- **General Description:** Complex machine learning (ML) tasks, e.g., classification, clustering, and prediction are key applications that would profit from being deployed on IoT devices.
- State-of-the-Art Systems and Their limitations:
 - Customized solutions of batch- and stream processing systems (e.g. Flink, Spark)
 - ML frameworks (PyTorch, scikit-learn)
 - Inference in IoT environments are not supported by general purpose ML systems.
- Enabling Emerging IoT Applications:
 - Local and distributed models would allow for lower latency
 - Reduce network load and latency during inference

NebulaStream Stack

Summary

Core features enable the next generation of IoT applications but are not yet supported by state-of-the-art systems.

Domain specific features enable a richer set of applications over an IoT data management platform such as NES.

A general-purpose, end-to-end data management system for the IoT.

www.nebula.stream