
NebulaStream: An Extensible, High-Performance Streaming
Engine for Multi-Modal Edge Applications
Adrian Michalke
Aljoscha Lepping
Volker Markl

Ricardo Martinez
Nils Schubert

Lukas Schwerdtfeger
Taha Tekdogan
Steffen Zeuch
Ariane Ziehn

michalke@campus.tu-berlin.de
aljoscha.p.lepping@tu-berlin.de

volker.markl@tu-berlin.de
r.martinez.ramirez@tu-berlin.de

n.schubert.1@tu-berlin.de
lukas.schwerdtfeger@campus.tu-berlin.de

tekdogan@tu-berlin.de
steffen.zeuch@tu-berlin.de

ariane.ziehn@campus.tu-berlin.de
Berlin Institute for the Foundations of Learning and Data

(BIFOLD)
Berlin, Germany

Christoph Falkensteiner
Kyle Krüger

Alexander Meyer
Tobias Röschl

Svea Wilkending
christoph.falkensteiner@dhzc-charite.de

kyle-steven.krueger@charite.de
alexander.meyer@dhzc-charite.de
tobias.roeschl@dhzc-charite.de

svea.wilkending@dhzc-charite.de
Charité Berlin
Berlin, Germany

Abstract
NebulaStream is a novel, open-source data stream processing sys-
tem for massively distributed, heterogeneous data streams in the
cloud-edge continuum. It adheres to the design goals of ease-of-use,
extensibility, and efficiency to provide a framework for users and
developers to implement diverse Internet of Things (IoT) use cases.
Equipped with essential built-in functionalities, NebulaStream al-
lows users to customize the system easily while ensuring efficient
execution even on low-end devices.

In this demonstration, we highlight NebulaStream’s ability to
integrate and process multi-modal, multi-frequency data streams.
We showcase its abilities through a real-world IoT scenario where
NebulaStream is used to improve the health assessment of patients
in a smart intensive care unit.

CCS Concepts
• Information systems→ Stream management.

Keywords
Streaming, IoT, Edge, Cloud

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGMOD-Companion ’25, Berlin, Germany
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1564-8/2025/06
https://doi.org/10.1145/3722212.3725118

ACM Reference Format:
Adrian Michalke, Aljoscha Lepping, Volker Markl, Ricardo Martinez, Nils
Schubert, Lukas Schwerdtfeger, Taha Tekdogan, Steffen Zeuch, Ariane
Ziehn, Christoph Falkensteiner, Kyle Krüger, Alexander Meyer, Tobias
Röschl, and Svea Wilkending. 2025. NebulaStream: An Extensible, High-
Performance Streaming Engine for Multi-Modal Edge Applications. In Com-
panion of the 2025 International Conference onManagement of Data (SIGMOD-
Companion ’25), June 22–27, 2025, Berlin, Germany. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3722212.3725118

1 Introduction
Data in the IoT is becoming more and more diverse, generated
by heterogeneous devices in different formats, frequencies, proto-
cols, etc. The heterogeneity of the IoT data presents a challenging
problem for near real-time streaming applications with respect to
converting, aligning, and combining the data streams, particularly
in dynamically changing environments that require the regular
integration of new streams, formats, or data analysis algorithms.

In our collaboration at the Berlin Institute for the Foundations
of Learning and Data (BIFOLD) with the Deutsches Herzzentrum
der Charité (DHZC), Europe’s largest University Hospital, we have
seen the above challenges in patient monitoring, specifically in data
collection, analysis, and alerting tasks. For example, intensive care
units (ICUs) have a growing number of patient data sources, which
vary from sensors with low frequency that measure blood pressure
every five minutes to high-speed ECG sensors that produce time-
series with millisecond granularity. To assess the health of a patient,
these fast data streams are combined with very slowly moving data

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3722212.3725118
https://doi.org/10.1145/3722212.3725118

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Adrian Michalke et al.

NebulaStream Worker

Source
 Connectors

Input
Formatter

PATTERN bloodtest:=
(abp[1:6])
FROM abp
WHERE abp.value >= 100
WITHIN [3 MINUTE]

PATTERN blood_Q2:= (Abp SEQ blood
flow)
FROM abp, bloodflow
WHERE abp.value >= 0 && bloodflow > 0
WITHIN [1 MINUTE]

SELECT patients_names
FROM patient
Custom_Op age
WHERE age > 80

Output
 Formatter

Sink
Connectors

Query Engine

JDBC

MQTT

Custom
Source

Connector

ZMQ

TCP

CSV

Binary

Custom
Format

JSON

Internal

CSV

Binary

Custom
Format

JSON

Internal

JDBC

MQTT

Custom
Sink

Connector

ZMQ

TCP

Query Compiler & Optimizer

Query
Catalog

Worker
Thread

Pool

Task
Queue

Filter Map Operator
Plugin

Window
Agg.

1 I/O
Thread

Pool
2

3

4

Pipeline

Optimizer and Compiler
5

6

7

Rule
Engine

T1 T2 T3 T5T4 T6 T7

Push
Down

Reorder
Rule

Custom
Rule

Figure 1: NebulaStream Architecture.

streams, such as lab work and assessments by nurses or doctors,
which are often provided daily. Furthermore, the integration ofmore
recent experimental modalities, such as camera or audio data, in
the analysis and alerting process of the ICU could be used to detect
the deterioration of a patient’s health even earlier. In today’s ICUs,
these data sources remain disconnected, requiring medical staff to
manually combine available information in a time-consuming and
error-prone process.

In a potential smart ICU, all available data sources could be
seamlessly integrated into an SPE, making it possible to analyze
complex events in near-real-time to enhance the accuracy, speed,
and efficiency of assessing a patient’s personalized health status.
From a system perspective, today’s SPEs are not built for IoT appli-
cations and their particular needs [8]. In particular, they induce the
following problems.

High System Complexity: Providing a user-friendly interface
for a complex system that processes multi-modal, multi-frequency
streams requires a simple language to express interrelated events
while optimizing execution automatically. However, modern SPEs
lack built-in functionality for such diverse streams, relying on user-
defined functions (UDFs) that are neither user-friendly for domain
experts nor as efficient as built-in functions. In particular, users
must independently handle tasks such as stream alignment, data
pre-processing, event specification, or ML integration. By requir-
ing programming skills, deep system knowledge, and expertise in
diverse areas from the user, the system becomes inaccessible to
domain experts and challenging to operate effectively when the
state-of-the-art advances with respect to adding new data streams
or alerting algorithms.

Limited Extensibility: Providing all possible functionality out-
of-the-box is economically not feasible. Thus, a system has to offer
a high degree of extensibility to the user. However, only some SPEs
provide a restricted set of extension possibilities. In general, the
interaction of sources and formats and their efficient integration
into the processing are left to the user. Furthermore, additional
custom operators and their optimizations are hardly possible.

Low Efficiency: IoT-related applications require processing on
edge devices with limited capability. The processing on those de-
vices requires a high degree of efficiency as they are usually con-
nected to many high-speed sensors. However, today’s SPEs neglect
this aspect: they rely on managed runtimes and process data in a

hardware-oblivious fashion [9]. Furthermore, SPEs cannot reason
about what happens inside a UDF, which severely limits query
optimization and thus efficient processing.

In this demonstration, we present NebulaStream, an SPE de-
signed to handle multi-modal, multi-frequency IoT workloads effi-
ciently. NebulaStream is built around the design goals of ease-of-use,
extensibility, and efficiency to provide a robust framework for users
and developers to implement diverse IoT applications. To achieve
this, it offers essential built-in functionalities, such as alignment
and inference, to reduce manual and error-prone efforts when com-
bining diverse streams. Additionally, NebulaStream enables users
to seamlessly integrate custom formats, sources, and functionali-
ties to tailor the system to specific requirements, while supporting
two declarative languages to specify workloads over multi-modal,
multi-frequency streams. As a real-world example, we demonstrate
how its design goals enable the creation of a smart ICU.

2 Overview of NebulaStream
In this section, we present the design of NebulaStream that ad-
dresses problems of state-of-the-art SPEs for IoT applications. In
short, NebulaStream is built on top of three design goals.

DG1) Ease-of-Use: NebulaStream provides out-of-the-box func-
tionality for common tasks required bymulti-modal, multi-frequency
streams, e.g., alignment or inference. This enables users to focus
on business logic with well-known abstractions and concepts.

DG2) Extensibility: NebulaStream empowers users to easily
integrate custom data connectors, formats, operators, and optimiza-
tions into the system.

DG3) Efficiency: NebulaStream utilizes distributed heteroge-
neous computing devices, including low-end ones, with hardware-
tailored code, adaptive execution, and the interleaved processing
of data sources to handle large workloads efficiently.

In Figure 1, we present the client-server architecture of Nebu-
laStream. However, we restrict the presentation in this paper to
the worker side and single-node execution, excluding distributed
collaboration among nodes. We refer the reader to our system pa-
per [8] for the overall description of the system. On the left (see 1),
different sources are connected to a NebulaStream Worker. These
sources send their data to the Source Manager in binary or custom
formats (see 2). For commonly used source connectors, e.g., JDBC,
MQTT, or TCP, the Source Manager provides built-in connectors

NebulaStream on the Edge SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

(DG1). In addition, users can add custom source connectors without
having to change system internals (DG2), e.g., for different stan-
dards like Service-oriented Device Connectivity (SDC) as a connector
for medical devices or Open Platform Communications (OPC) as a
platform-independent service-oriented connector.

Unlike other SPEs that handle sources individually and syn-
chronously by assigning one thread per source, NebulaStream in-
terleaves source processing via thread sharing within its own I/O
thread pool and applies asynchronous callbacks to reduce waiting
time. As a result, NebulaStream can handle many sources more effi-
ciently and guarantees fairness and progress among them (DG3).
After receiving data from the Source Connectors, the system con-
verts the data into an internal format by either using a built-in
formatter (DG1) or a custom formatter (DG2). The same logic
applies to the Sink Manager (see 3) that also allows for custom
connectors and formatters.

On the upper side of Figure 1, query submission examples are
shown (see 4) using NebulaStream’s two input languages. First, us-
ing a SQL-like query language with streaming extensions, the user
can express queries to extract and transform data from raw streams
by applying common data manipulation (e.g., filter or project),
data transformation (e.g., map), data grouping by time or count
using windowing, and stream join operations. Furthermore, Neb-
ulaStream supports additional operations out-of-the-box, such as
alignment with resampling or interpolation and inference from ML
models (DG1). Second, using a pattern specification language (PSL),
users can express complex event patterns with logical, temporal,
or causal relationships. These patterns are the backbone of many
applications, enabling the detection of interesting events and trends
in the data. When such events are detected, the system can trigger
notifications (e.g., alerts) to signal when specific conditions are met.

After query submission, NebulaStream transforms and optimizes
all queries from both languages into a single global query plan. The
Query Optimizer applies common optimization rules from the Rule
Engine (see 5), such as filter push-down, but also allows users to
specify custom rules (DG2). To generate code, the Query Compiler
chunks the global query plan into pipelines and lowers them into an
internal representation. After that, the compiler calls the Nautilus
Framework, a lightweight and adaptable just-in-time (JIT) compiler,
to generate hardware-tailored code [2] (DG2). Finally, the generated
code is placed in the Query Catalog.

During runtime, the Query Engine (see 6) schedules query pro-
cessing in a highly dynamic manner using the abstraction of tasks
(DG3). Every task encapsulates one processing step (i.e., a compiled
pipeline) on one data item (i.e., a tuple buffer from the source). For
processing, worker threads dequeue tasks from the Task Queue
whenever they have capacity. As shown in the example pipeline
(see 7), a pipeline might contain a mix of custom and built-in
operators. At the end of each pipeline, the result is either emitted to
the Sink Manager for output or a new task is created if further pro-
cessing is required. This highly dynamic execution model imposes
many benefits compared to static resource assignments used in to-
day’s systems. In particular, it dynamically and implicitly balances
the load. As a result, NebulaStream can quickly react to fluctuating
workloads and avoid idling resources that may arise due to a static
work assignment in a highly dynamic environment (DG3).

In sum, the architecture of NebulaStream provides a framework
with many built-in functionalities to enable a wide range of applica-
tion scenarios out-of-the-box (DG1). In addition, it provides a high
degree of extensibility to developers for customization to enable
an even larger set of use cases (DG2). Finally, the highly efficient
design allows NebulaStream to process large amounts of data with
minimal resource requirements (DG3).

3 Demonstration
In this demonstration, we highlight how NebulaStream can be used
to build emerging IoT applications. To this end, we showcase a
smart ICU that we are developing together with the DHZC.

ICU Setup. Our demonstration setup consists of three compo-
nents. First, a smart ICU bed equipped with the four medical data
sources (see Figure 2a). Second, a visualization of the raw streams
on the left side of Figure 2b. Third, an analysis of these streams
through queries submitted to NebulaStream combined with a smart
alerting that detects diseases and proposes possible treatments (see
right side of Figure 2b). In the following, we briefly introduce each
device and its relevance to clinical research and smart alerts.

1 A thermal camera captures RGB and infrared frames to detect
facial features, segment them, and track the heatmaps. In clinical
research, this method has shown promise in the early detection of
hemodynamic shock (HS), a life-threatening event [5].

2 A microphone records audio to classify sounds. In clinical
research, audio of lung and breathing sounds is used to detect
diseases, such as acute respiratory distress syndrome (ARDS) or
chronic obstructive pulmonary disease (COPD) [1, 4, 7].

3 A patient monitoring device (PMD) continuously records
the patients’ vital parameters like the heart rate from the elec-
trocardiogram signal or blood oxygen saturation (SpO2) from a
photoplethesmograph (PPG). In clinical practice, these metrics are
good indicators to detect an acute change in patient health [3].

4 A patient data management system (PDMS) provides infre-
quent data, like laboratory results, x-ray images, or medical staff
assessments. In clinical practice, this information is combined with
the acute events of the PMD to assess the health status of a patient.

Clinical relevance and challenges: In today’s clinical prac-
tice, the PDMS is the primary source of information for physicians.
In addition, audio signals, thermal imaging, and high-frequency
biosignals have shown value in detecting life-threatening condi-
tions, such as HS and ARDS. However, their timely accessibility
remains challenging due to high sampling rate requirements and
complex integration needs. NebulaStream aims to assist medical
staff with an intelligent co-pilot by integrating all relevant sources.
In particular, it provides all of the required functionality out-of-
the-box, enables the required extensions of data connectors and
operators, and enables the processing of common ICU setups on
low-end devices next to the bed. As a result, NebulaStream relieves
medical staff from the labor-intensive and error-prone manual work
of gathering and analyzing all information and can aid in the early
detection of life-threatening events.

ICU Scenarios. To showcase NebulaStream’s ability to aid in
early detection of critical health statuses and enhance patient care,
we present two ICU scenarios.

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Adrian Michalke et al.

(a) Physical Setup. (b) Visualization.
Figure 2: Demonstration.

HS Detection. Shock is defined as an imbalance between cellu-
lar oxygen supply and demand. It is often triggered by infections
(septic) or heart failure (cardiogenic). Normally, shock is primar-
ily detected through tachycardia and hypotensive blood pressure
values as the shock index. Expanding this monitoring to include
thermal images could provide a life-saving time advantage [6].

Using NebulaStream, medical staff can automatically monitor
thermal imaging data, blood pressure values, and pulse oximetry
waveforms for HS indicators. Since the thermal camera provides
RGB and infrared streams at different speeds, NebulaStream has
to align them before model inference. A HS is detected if 1) the
blood pressure value is over a particular threshold, and 2) the pulse
oximetry waveform shows a particular pattern, and 3) the thermal
camera model detects reduced peripheral perfusion.

ARDS Detection. ARDS occurs when a severe lung injury, such
as from COVID-19 infections, prevents the lungs from delivering
oxygen to the bloodstream. Certain causes of ARDS produce distinct
breathing sounds that can be detected using a combination of signal
processing and machine learning to analyze the audio of digital
stethoscopes [7]. In addition, automated analysis of X-ray images
of the lung could assist the diagnosis. Using NebulaStream, medical
experts can combine audio signals, x-ray image analysis, and pulse
oximetry data to support early ARDS detection and enhance patient
care. An ARDS is detected if 1) the x-ray image shows that a large
lung area is covered white, and 2) the pulse oximetry waveform
shows a particular pattern, and 3) if the learned model detects an
abnormal breathing pattern.

Attendee Experience. The demo experience is divided into two
parts, i.e., a hands-on experience to explore the smart ICU scenarios
and their challenges, and an under-the-hood experience to explore
the technical details of NebulaStream.

Part 1: Hands-on. The attendees can take on the role of a medi-
cal staff member and explore the ICU setup. We allow the attendees
to interact and get familiar with the ICU bed and the attached
devices and observe their live visualizations on the dashboard. Fur-
thermore, attendees can explore the two preparedmedical scenarios,
i.e., HS and ARDS. To this end, we visualize the underlying queries
(see 5) and present the smart alerts that include treatment rec-
ommendations (see 6). Note that we use historical data for these

queries to show data associated with pathology instead of presum-
ably healthy attendees. This part demonstrates how NebulaStream
integrates and processes multi-modal, multi-frequency data streams
for real-time analytics.

Part 2: Under-the-Hood.We invite attendees to dive deeper
into NebulaStream’s architecture and explore with the NebulaS-
tream Team how it addresses the complexities of multi-modal data
processing. Leveraging ICU scenarios, attendees will gain a deeper
understanding of NebulaStream’s ability to tackle IoT challenges,
such as stream alignment, scalability, and real-time processing.

Acknowledgments
This work was funded by the German Federal Ministry for Educa-
tion and Research as BIFOLD—Berlin Institute for the Foundations
of Learning and Data (ref. 01IS18025A and ref. 01IS18037A). We
want to thank the following students for their valuable contribu-
tions: Niklas Tantow, Tilmann Dietzel, Tim Nacken, Felix Taschner,
Luca Gaedicke, Lily Seidl, and Tarik Abu Mukh. Finally, we want to
thank Grigorii Turchenko for contributing to this demonstration.

References
[1] Angelo Calabrese, Davide Chiumello, Martina Gurgitano, et al. 2020. Use of digital

auscultation in patients with ARDS: a correlation study with CT imaging. European
Respiratory Journal 56, suppl 64 (2020).

[2] Philipp M Grulich, Aljoscha P Lepping, Dwi PA Nugroho, et al. 2024. Query
Compilation Without Regrets. Proceedings of the ACM on Management of Data 2,
3 (2024), 1–28.

[3] João Jorge, Mauricio Villarroel, Hamish Tomlinson, et al. 2022. Non-contact
physiological monitoring of post-operative patients in the intensive care unit. npj
Digital Medicine 5, 1 (Jan. 2022).

[4] Sung Hoon Lee, Yun-Soung Kim, Min-Kyung Yeo, et al. 2022. Fully portable
continuous real-time auscultation with a soft wearable stethoscope designed for
automated disease diagnosis. Science Advances 8, 21 (2022), eabo5867.

[5] Aditya Nagori, Lovedeep Singh Dhingra, Ambika Bhatnagar, et al. 2019. Predicting
Hemodynamic Shock from Thermal Images using Machine Learning. Scientific
Reports 9 (2019), 91.

[6] Alejandra Ortiz-Dosal, Eleazar S. Kolosovas-Machuca, Rosalina Rivera-Vega, et al.
2014. Use of infrared thermography in children with shock: A case series. (2014).

[7] Ruchi Sharma, Menglian Zhou, Mohamad Hakam Tiba, et al. 2022. Breath analysis
for detection and trajectory monitoring of acute respiratory distress syndrome in
swine. ERJ Open Research 8, 1 (2022).

[8] Steffen Zeuch, Ankit Chaudhary, Bonaventura Del Monte, et al. 2020. The Nebu-
laStream Platform for Data and Application Management in the Internet of Things.
In CIDR 2020. www.cidrdb.org.

[9] Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, et al. 2019. Analyzing
efficient stream processing on modern hardware. Proc. VLDB Endow.

	Abstract
	1 Introduction
	2 Overview of NebulaStream
	3 Demonstration
	Acknowledgments
	References

