
PREPRIN
T

Incremental Stream Query Placement
in Massively Distributed and Volatile Infrastructures

Ankit Chaudhary1,2, Kaustubh Beedkar3, Jeyhun Karimov4, Felix Lang1, Steffen Zeuch1,2, Volker Markl1,2,5

BIFOLD1, TU Berlin2, IIT Delhi3, Ververica GmbH4, DFKI GmbH5

firstname.lastname@(tu-berlin.de1,2, cse.iitd.ac.in3, ververica.com4, dfki.de5)

Abstract—More and more data is produced outside the cloud by edge
devices that provide basic processing capabilities. This trend enables
a new class of data management systems that use both edge and cloud
infrastructures for efficient data processing. Such systems push down
operations by placing query operators close to the data-producing
devices. A key challenge for these systems is handling the evolution of
continuous queries and the dynamic changes in the infrastructure. In
particular, frequent arrival or removal of queries and potential volatil-
ity of the infrastructure might invalidate or reduce the efficiency of
previous operator placement decisions and thus might lead to constant,
expensive re-optimizations of queries. These changes require new solu-
tions for operator placement, which adjust existing placement decisions
upon changes to the queries and infrastructure. In this paper, we pro-
pose ISQP, a framework that keeps the operator placements valid un-
der query and infrastructure changes. ISQP performs a fine-grained
identification of invalid operator placements and takes concurrent, in-
cremental placement decisions to reduce the optimization time. ISQP
works for arbitrary placement strategies, making it a general-purpose
framework. Our evaluations show that ISQP reduces the optimiza-
tion overhead by one order of magnitude compared to the baseline.

Index Terms—IoT, Stream Processing, Operator Placement

I. INTRODUCTION

Massively distributed applications, such as smart mobility, surveil-
lance, delivery services, or traffic management, are gaining popular-
ity due to their ability to improve quality of life [1], [2], [3], [4], [5],
[6], [7]. These applications need low-latency [8], [9], [10], energy
efficient [11], [12], [13], privacy-preserving computations [14],
[11] over numerous data streams produced by geo-distributed
and mobile devices outside the cloud data centers. However, the
traditional approach of transferring data to robust and scalable
cloud data centers for processing [15], [16] cannot satisfy these
requirements due to its high latency, increased network resource
consumption, and data movement outside permissible zones. These
limitations have led to the emergence of a new class of DSPEs that
operate over a unified sensor-edge-cloud infrastructure at a massive
scale and manage the execution of thousands of queries by pushing
down operations outside cloud data centers [17], [18], [19], [20].

In such systems, the physical topology of this large,
heterogeneous, distributed infrastructure is typically modeled as
a large graph of device nodes with different characteristics (e.g.,
different computational capabilities, storage, energy consumption)
connected by communication edges with varying capacities (e.g.,
varying bandwidth, latency, energy consumption). The continuous
queries running in the system can be modeled as a set of dataflow
plans, where each plan consists of operator nodes denoting either
data sources or operations on the data and edges denoting the flow

Q1:bus1.union
(bus2).window().map(PassengerLoadUDF).sink()

Q2:bus1.union(bus2).window().map(ODMarixUDF).sink()
Q3:bus1.union(bus2).window().map(ODMarixUDF).sink()
Q4:bus1.union(bus2).window()

.map(TelemetryUdf).map(PassengerLoadUdf).sink()

Listing 1: Queries serving smart mobility applications.

of data between the operator nodes. We can merge dataflow plans
with common operators and refer to this merged set of concurrently
running plans as the global query plan (GQP) in the rest of the paper.

Operator placement is a crucial step during the query
optimization in a DSPE that maps query operators to the physical
topology nodes before their execution [21], [22]. DSPEs operating
over a massively distributed edge-cloud infrastructure have to
account for two unique characteristics: the arrival or removal
of stream queries [23], [24], and volatility in the underlying
infrastructure [17], [14], [25]. These characteristics generate
frequent change events (CEs) that affect running queries (i.e.,
addition or removal of queries) and the topology (i.e., registration or
de-registration of devices and their communication edges). Under
these frequent CEs, the placement mappings of operators can
be missing, invalid, or inefficient. As a result, CEs frequently
interrupt, delay, or cause the running queries to fail. Throughout this
paper, we use the term “invalid” to denote inefficient, missing, or
invalid placement mappings, as the handling of all cases is identical.
Next, we highlight the effect of CEs on a real-world application.

Smart City Platform: Figure 1(a) illustrates the topology of a
distributed edge-cloud infrastructure in a smart city, consisting of
heterogeneous, geo-distributed devices (for now, ignore the red
arrow) [5], [26]. The topology includes two buses and a speed
camera (N1–N3), which are connected via intermediate edge devices
(N4–N8) to cloud devices (N9 and N10).1 The public transport system
in a smart city can generate data streams containing information
on vehicle location, ticketing, types of objects entering or exiting,
and performance parameters [1], [27], [28]. These data streams
are processed to support real-time applications such as crowd
management, adaptive scheduling, and breakage detection [29].

Initially, three queries—Q1, Q2, and Q3 from Listing 1—were
deployed to run smart mobility applications. Q1 is a long-running
query implemented by the engineering team to count people entering
or exiting buses and to compute passenger load [30]. Queries Q2 and

1In practice, such infrastructure contains thousands of mobile devices (e.g., buses,
taxis, or trains) and fixed devices (e.g., cameras or weather stations).

PREPRIN
T

N4 N6

Topology

N1 N2 N3

O11

O4

O3

O1 O2

O5

N2N1

N4

N7

N7

N7

N5

N7 N8

N9 N10 O6N9 O12N9 O18N10

O11

O4

O3

O1 O2

O5

N2N1

N4

N7

N7

N7

(d)

O6N9 O12N9 O18N10

O19

O20

O21
N10

CLE2

CLE3

CLE1

O4

O3

O1 O2

O5

O6

O10

O9

O7 O8

O11

O12

O16

O15

O13 O14

O17

O18

Q1 Q2 Q3 Q1 Q2 Q3

(c)(b)(a)

Q1 Q2 Q3 Q4

Fig. 1: (a) Example topology; (b) Example queries; (c) A global
query plan with initial operator mapping; (d) Invalid mapping upon
re-connection of mobile nodes N1 and N2, removal of query Q3,
and addition of query Q4.

Q3 are short-running exploratory queries submitted simultaneously
by the data analyst team to evaluate the performance of their origin-
destination matrix algorithm capturing the flow of passengers [31].
Figure 1(b) illustrates the individual query plans of these three
queries, which the DSPE merges into a GQP, as shown in Fig-
ure 1(c).2 Each operator’s label Nx indicates its execution locations.

During runtime, the DSPE concurrently (or within a short period)
receives three CEs. CE1 adds a new short-running query Q4 for the
duration of a public event, which analyzes telemetry data and passen-
ger load of buses to detect traffic congestion, breakdown probability,
and passenger load, thereby adjusting bus frequencies to prevent
overcrowding adaptively [32], [33]. CE2 requests the removal of
the short-running query Q3. CE3 is a node migration alert for the
re-connection of buses, represented by N1 and N2, from N4 to N5.

Applying the above CEs to the GQP at runtime invalidates the
operator mappings. Figure 1(d) shows the GQP (for now, ignore
the dotted lines) after applying the CEs. Specifically, adding Q4

results in operators O19, O20, and O21 lacking placement mappings
(cf. green nodes). Removing query Q3 results in operator O18

having an invalid mapping (cf. red node). The re-connection of
nodes N1 and N2 results in operator O3 being placed on a node
without a connection to the upstream operators (cf. orange node).

A traditional approach [25] handles an invalid operator placement
by performing CEs serially, one at a time. Since each CE can
potentially affect many queries, the traditional approach requires re-
moving and performing operator (re-)placement of affected queries,
one query at a time. However, under frequent query and physical
topology changes, this approach can quickly become a bottleneck,
as the overall optimization time is influenced by the number of
operators to be placed and the number of nodes in the topology [34],
[35], [22]. Consequently, this approach delays the deployment of
newly arriving queries and the resumption of interrupted queries,
making the DSPE impractical for latency-sensitive applications.

An improvement over the traditional approach is to jointly handle
a batch of CEs to (1) identify the operators affected by query or
topology changes and (2) perform concurrent (re-)placement of
the affected operators rather than the entire affected query plans.
We refer to this improved approach as incremental and concurrent
stream query placement (ISQP). We show in Sec. VII-B that ISQP
reduces the optimization overhead by up to 23× and execution

2For brevity, our example GQP comprises only one disconnected plan, but in
actual there can be thousands of such plans.

latency by up to 880× compared to the traditional approach and
thus making DSPEs capable of operating in dynamic environments.

ISQP, however, entails the following challenges: C1: Identify
invalid operator placement mappings among thousands of
queries. A DSPE can receive arbitrary CEs that affect operator
placement of existing or new queries. Scaling ISQP across
large topologies and query graphs under frequent CE changes is
particularly challenging. C2: Compute query deltas from affected
operators to perform incremental amendments. CEs can
affect prior placement decisions for multiple queries and operators.
Affected operators may be amended independently or require their
placements to be performed together (dependent). Thus, identifying
dependencies among affected operators to compute delta across
all queries affected by CEs to perform incremental amendment
remains challenging. C3: Perform concurrent amendments to
reduce overall optimization time. Typically, DSPEs perform
centralized, query-at-a-time placement [36], [37], [38], [17].
Looking jointly at all affected queries and providing concurrent
amendments is a challenge but necessary for both high throughput,
low latency processing of CEs and better performance of ISQP.

Existing research has studied the operator placement problem
for geo-distributed environments [39], [35], [40], [34], [21], [41],
[42]. These works apply cost-based, centralized, or decentralized
methods to optimize operator placement for various goals. However,
only a few approaches consider dynamicity [21], [41], [39] and
only for changing data characteristics. An alternate approach to
handle infrastructure dynamism is to replicate operators on multiple
nodes [14]. However, this requires custom logic for de-duplicating
processed data and consumes more network and energy resources.
Overall, no existing work proposes a solution for amending an
existing operator placement due to CEs in a massively distributed,
heterogeneous, volatile environment.
ISQP maintains valid operator placement in a DSPE under

high-frequency CEs with minimal optimization overhead. ISQP
processes CEs in batches to identify invalid placements. First,
it records affected placements by combining operator metadata
with change log entries, which efficiently allows identifying
impacted operators among thousands of queries (C1). Then,
ISQP computes query deltas to manage placement dependencies
across concurrent CEs, reducing operators and change log entries
processed, enabling incremental amendments (C2). Finally, ISQP
treats these amendments as transactions, using concurrency control
to avoid conflicts in placement (C3).

In summary, after discussing preliminaries in Sec. II, we make
the following major contributions:
• We present ISQP, a framework that keeps operator placement

valid under continuous changes to concurrently running queries
and physical topology (Sec. III).

• We propose the mechanism to process CEs and store affected
operators as change logs for efficient identification (Sec. IV).

• We introduce query deltas that encapsulate non-overlapping
change logs and enable incremental amendments (Sec. V).

• We present how concurrency control mechanisms can be applied
for parallel processing of query deltas (Sec. VI).

• We present a detailed analysis to show that ISQP reduces
optimization overhead up to a factor of 23.3 (Sec. VII).

PREPRIN
T

II. PRELIMINARIES

a) Physical Topology: We denote the underlying physical
infrastructure by a directed graph T =(N,L) where N is a set of
nodes (devices) with compute and memory resources and L is a
set of network links between pairs of nodes.
b) Global Query Plan: The Global Query Plan (GQP) is a directed
acyclic graph G=(O,E) where O denotes the set of operators, and
E denotes the set of directed data flow edges between operators.
The global query plan captures all queries concurrently running in
the DSPE. If queries share common sub-expressions, their plans
may have been connected in the global query graph [24]. However,
queries that do not share common operators result in disconnected
plans in the GQP. These disconnected plans can be processed
independently from each other during ISQP.

As disconnected plans are quite common in real-world workloads
and drastically impact efficiency, we explicitly model this in ISQP.
Therefore, we define the GQP as the set G= {G1∪···∪Gn} of
disconnected query plans (DQPs). Each Gi has its own disjoint
set of operators Oi and disjoint data flow edges Ei, such that
O=O1∪···∪On and E =E1∪···∪En, and for all i,j ∈ [1,...,n]
i≠j: Ei∩Ej=∅ and Oi∩Oj=∅.
Operator Placement Mapping: An operator placement
PG,T ⊆O×N is a mapping relation that relates each operator of
the GQP G to a (set of) node(s) of the physical topologyT , and vice
versa, i.e., for an operator o∈O of G and for a node n∈N of T :3

PG,T (o)={n |n∈N and (o,n)∈PG,T}
P−1

G,T (n)={o |o∈O and (o,n)∈PG,T}
Definition 1 (Valid Operator Placement Mapping): Given a

GQP G and a physical topology T , we say that the mapping PG,T
is valid if and only if:
1) For each o∈O there exists n∈N such that (o,n)∈PG,T .
2) For any two operators o, o′ ∈ O and nodes n,n′ ∈ N , the

mappings (o,n), (o′, n′) ∈ PG,T if o → o′ ∈ E and either
n→n′∈L or n=n′.

3) If o∉O then (o,n)∉PG,T for each n∈N .
4) If n∉N then (o,n)∉PG,T for each o∈O.

The above conditions ensure that operator placement mapping
is both complete and sound. In particular, conditions (1) and (2)
ensure that every operator in the GQP must be mapped to a node
in the physical topology and that the mapping respects the topology
of both GQP and T . Condition (3) ensures that inactive query
operators are not mapped to any node in T , and (4) ensures that no
query operator is mapped to an inactive topology node (e.g., due to
failure). For example, Figure 1(c) shows a valid operator mapping
for the example GQP where we label operators as Nx to denote
their topology node mappings.

DSPEs must continuously handle external events by adding or
removing queries in the GQP and registering or de-registering
links and nodes in the underlying volatile infrastructure T . We
refer to the former as query change events (CEQ) and the latter as
topology change events (CET). Let ∆G and ∆T denote the change
in GQP and topology due to CEs. These events, consequently,
render the placement mapping PG+∆G,T+∆T invalid. For example,

3wlog, we assume that |PG,T (o)|=1.

Symbol/Acronym Description
GQP Global query plan
DQP Disjoint query plan
S(o) State of an operator

Query addition, query removal,
CEQ+, CEQ−, CEL+, CEL−, link addition, link removal,
CEN+, CEN−, and CEP node addition, node removal, and

placement change events resp.
CLE Change log entry
∆Q Subgraph of DQP containing operators

with invalid placements

TABLE I: Table of symbols used in the paper.

in Figure 1(d), adding a new query violates condition (1) (cf. green
nodes), removing query Q3 violates condition (3) (cf. red node),
and the re-connection of nodes N1 and N2 violates condition (2)
(cf. orange node).

Existing approaches in DSPEs handle invalid mapping by
holistically optimizing GQP using cost-based or heuristics-based
operator placement algorithms (OP), i.e., when GQP and topology
changes from G and T to G +∆G and T +∆T , they compute
PG+∆G,T+∆T =OP(G+∆G,T+∆T). This results in significant
optimization overhead and affects the latency of currently
deployed queries. In this paper, we seek to incrementally compute
PG+∆G,T+∆T as PG,T +OP(∆G,∆T) under continuous query
and infrastructure changes.
Discussion: Many valid mappings could exist for a given G and T .
We seek to incrementally find a mapping that minimizes the GQP
(re)optimization time. This paper focuses on jointly handling con-
current changes to the GQP and topology. We incrementally and
concurrently compute a valid mapping while allowing plugging in
both cost-based and heuristics-based operator placement algorithms.

III. SYSTEM OVERVIEW

This section gives an overview of ISQP, which allows
incremental computation of the invalid operator placement mapping
PG,T . Figure 2 shows ISQP’s internal components (inside the
green box) and their integration within a DSPE.

The DSPE uses the query interface 1 to receive requests to
run new or remove existing queries (CEQ events) and a monitoring
component 2 to receive requests to update the underlying
infrastructure by adding or removing nodes or edges of the physical
topology (CET events). These components use a queue to register
continuously the received CEQ and CET events. The DSPE uses
a query optimizer to perform logical and physical rewrites to a
query plan, performs common sub-expression identification to
merge queries, and deploys the updated queries by distributing the
operators on the physical topology.
ISQP consumes CEQ and CET events jointly, i.e., in a batch-at-

a-time fashion, to identify and fix operator placement mappings
that become invalid due to consumed CEs. Note that the batches
can be constructed based on a fixed number of change events,
a given time interval, or a combination thereof. Finally, ISQP
calls the undeployment 3 and the deployment 4 components to
undeploy old or deploy newly placed operators, respectively. Next,
we describe the components and workflow of ISQP.
ISQP consists of four main components: (1) Cata-

log; (2) Change Event Applicator; (3) Delta Computer; and (4) Op-
erator Placement Amenders. The catalog maintains the physical

PREPRIN
T

MonitoringQuery Interface

DSPE 1 2

Delta Computer
Global Query

Plan

Topology

Query Change
Event

Q+Q-
Topology Change

Event

ISQP

L-N-L+N+

Queue

Undeployment
3

Deployment
4

Operator Placement
Amender

Apply External
Change Events

Invalid
Placements

M
ul

tip
le

In
st

an
ce

s

External Change
Events Batch

Catalog

Change Event
Applicator

5

1

2 3

4

CE*CE*

Sec. 4
Consumes batch of change

events, updates topology, and
identifies operators with invalid

placements.
Valid Placements

Sec. 5
Computes sub-plans that

contains connected operators
with invalid placements.

Sec. 6
Concurrently fixes invalid

operator placements in the
input sub-plans.

CE*

Fig. 2: System overview of ISQP.

topology T and the GQP. For each DQP in the GQP, we maintain
a change log to record the operators for which any of conditions (1)–
(4) of Definition 1 do not hold. These change logs allow ISQP
to limit the number of operators to fix and, thus, the operations that
need to be performed and allow incrementally computing PG,T .
We present details about the internals of change logs in Sec. IV.

The change event applicator is responsible for updating the
catalog and identifying the affected operators. First, it fetches a
batch of CEs comprising of CEQ and CET events (1). Second, it
applies these events to the topology graph T (to reflect the current
state of the infrastructure) and then to the GQP (to add new or
remove existing queries). During this process, the applicator records
in change logs all operators whose placement mappings become
invalid (2). We present details about CEs and their impact on
catalogs in Sec. IV-A and Sec. IV-B. Next, the delta computer
computes the delta to fix the invalid placement mapping.

The delta computer computes sub-plans containing connected
operators with invalid placements by analyzing the change logs (3).
These plan increments are called query deltas (∆Qs) in ISQP.
A ∆Q allows ISQP to take fine-grained actions to fix only the
invalid placement mappings instead of looking at the whole query
plan, thus reducing the overall optimization time. Finally, the
delta computer can compute multiple ∆Q that can be processed
concurrently. We present details about the query deltas and how
they are computed in Sec. V.

ISQP initiates a set number (configurable) of operator
placement amender instances to concurrently process ∆Qs (4).
Each instance fixes invalid placements within a query delta in
two phases. First, it removes invalid placements to free resources
(removal phase). Then, it applies the DSPE’s operator placement
algorithm [35], [22] to place operators of the query delta onto
suitable nodes in the updated topology (addition phase). This
approach lets ISQP (1) use existing placement algorithms without
modification, (2) incorporate new algorithms seamlessly, and (3)
integrate easily within a DSPE. During both phases, each instance
updates node resources. Since multiple instances may access

common topology nodes, ISQP employs concurrency control
to ensure consistency, allowing safe, concurrent use of placement
algorithms without modification. Details of the operator placement
amender and concurrency control are provided in Sec. VI.

Once a ∆Q is processed, each placement amender instance
updates the GQP in the catalog with the newly computed operator
placement mappings for all affected operators (5). Once all ∆Qs
get processed, the change event applicator repeats the process for the
next batch of CEs. Note that each of the four components of ISQP
performs the processing sequentially as they are interdependent. For
example, the change event applicator updates the topology and the
state of operators, while an operator placement amender instance
reads this updated topology to fix invalid operator placements. This
results in amenders producing valid operator placements based on
up-to-date topology information (cf. Definition 1). Next, we detail
the components of ISQP and our design decisions.

IV. CHANGE EVENT APPLICATOR

The change event applicator applies a batch of CEs to the topol-
ogy and the GQP to identify invalid operator placements. These
CEs can have varying effects on the operators of a DQP component
of the GQP. ISQP uses a collection of metadata and a change log
to record all affected operators. This section discusses the type of
CEs, their effect on operator placements, the metadata used to mark
these effects, and the change log used to collect affected operators
(Sec IV-A). Finally, we present details on how the change event
applicator populates the change logs for different CEs (Sec IV-B).

A. Change Events

Change events: We consider the following CEs: query addition
(CEQ+) created due to the arrival of new queries; query removal
(CEQ−) created due to the removal of a running query; node addition
(CEN+) created due to registration of a new worker node; node
removal (CEN−) created due to failure or scheduled maintenance of
a worker node; link addition (CEL+) created due to re-connection of
a mobile worker node; and link removal (CEL−) created due to the
disconnection of mobile worker node. Both CEN+ and CEL+ do not
affect existing operator placements but can present opportunities
to improve the existing placement decisions. However, the goal of
ISQP is to keep placement mapping valid; therefore, the applicator
processes these events only to update the topology and ignores
analyzing their effects on the DQPs.
Metadata: CEs have varying effects on operator placements.
Therefore, it is necessary to record how an operator is affected and
the action required to bring the placements of the affected operator to
a valid state. For each operator o, we associate PG,T (o) as the physi-
cal node in which the operator is placed, and stateS(o) that indicates
the current state of the operator. Note that for a newly added operator
o, PG,T (o)=∅. The current state of an operator allows for taking ap-
propriate actions to mitigate invalid placements. An operator can be
in one of the following states during its lifetime: ToBePlaced, Placed,
ToBeRePlaced, ToBeRemoved, or Removed. Figure 3 shows how the
state of an operator changes due to various CEs. Note that CEP event
is generated by ISQP after mitigating all invalid placements (cf.
Sec. VI). Next, we explain how ISQP records affected operators.

PREPRIN
T

ToBe
Placed Placed

ToBeRe
Placed

ToBe
Removed Removed

CEQ+

CEQ-
CEN-
CEL-

CEQ-

CEP

CEP CEP

CEQ-

Fig. 3: Operator state transition diagram.

Change Logs: The GQP of a DSPE can contain thousands of
DQPs collectively serving hundreds of thousands of merged stream
queries [24], [43]. Each DQP contains hundreds of operators
collectively serving all merged continuous queries. After applying
a change event, ISQP uses change logs to capture the operators
with invalid placement mappings (cf. Definition 1), i.e., S(o)≠
Placed ∨S(o)≠ Removed. As the change event applicator can
apply several CEs, a change log contains several indexed change
log entries (CLEs).

We define a CLE as a sub-graph of a DQP containing
operators with invalid mappings. In particular, for each operator
o in a CLE, the following properties hold at the time of CLE
creation4: (1) The root operators are either of type sink or are in the
state Placed; (2) The leaf operators are either of type source or are
in the state Placed; (3) All operators between leaf and root operators
are in the state ToBePlaced, ToBeRePlaced, or ToBeRemoved. For
example, Figure 1(d) shows three change log entries (CLE1 marked
with green dashed lines, CLE2 marked with red dashed lines, and
CLE3 marked with orange dashed lines) after applying CEQ+, CEQ−,
and CEN− respectively.

B. Processing Change Events

We present how CLEs are computed for different types of
CEs. The change event applicator processes a batch of CEs to
update topology and the GQP. This application may result in DQP
components of the GQP having operators with invalid placement
mappings. The applicator uses operator metadata and CLEs to
capture all such operators.
Processing CEQ+ event: Upon receiving a CEQ+ event, the change
event applicator calls the optimizer to find a DQP that shares
operators with the input query Q. We use our previous work
for sharing identification and refer the authors to the paper for
details [24]. If a DQP is found, Q is merged into the DQP by
connecting all not shared operators of Q to the shared operator
of DQP. The state of only the newly added operators is set to
ToBePlaced while all shared operators in the DQP remain unchanged
as their placements are unaffected. These newly added operators
form the sub-graph recorded in the change log of DQP. For
example, CLE1 formed after adding query Q4 in Figure 1(d). If
the optimizer finds no DQP that shares operators with the input
query, the applicator creates a new DQP. All operators’ states in
the new DQP are set to ToBePlaced. The whole DQP represents
the sub-graph with invalid placements and forms the CLE entry.
Processing CLEQ− event: Upon receiving a CLEQ− event, the
applicator fetches the DQP hosting the query. Sink operators
serving the removed query within the DQP are stored in a

4subsequent CEs may result in violating these properties for existing CLEs.

downstream operator set (Odown) to compute the affected sub-plan.
The applicator changes the state of Odown operators to ToBeRemoved
following the state transition diagram in Figure 3. The applicator
then recursively iterates over connected upstream operators of all
Odown operators to mark their state as ToBeRemoved. The recursion
stops at an operator o where not all downstream operators are in
the state ToBeRemoved. This indicates that o is shared by other
queries and not only serving the removed query. At this point,
the operator o is stored in the upstream operator set (Oup). The
Odown and Oup are then used to create a new CLE representing the
affected sub-graph. For example, CLE2 in Figure 1(d) represents
the sub-graph affected by the removal of the query Q3. Note that
the sub-graph stops at operator O6 as it is also serving query Q2.
Processing CEL− event: A CEL− event, apart from impacting the
topology, also impacts running DQPs. The applicator updates the
topology by removing the link provided in the change event. The
applicator then identifies DQPs using the removed link by analyz-
ing the operators placed on the source (NSrc) and destination (NDest)
nodes connected by the removed link. If a DQP has operators
placed only on one or none of the nodes, the link connecting the two
nodes was not used by the DQP. Thus, such DQPs are ignored
for further processing. Next, the applicator iterates over the DQPs
to find the sub-graph impacted by the link removal. In particular,
first, it finds the most upstream operator placed on the NDest and
assigns it to the downstream operator set (Odown). The operator in
Odown represents the most downstream operator unaffected by the
link removal. Second, the algorithm finds the most downstream
operator placed on the NSrc and assigns it to the upstream operator
set (Oup). The operator in Oup represents the most upstream operator
unaffected by the link removal. Third, the state of all operators
between Oup and Oup is changed to ToBeRePlaced. Finally, the
Odown and Oup are used to create a new CLE in the DQP.
Processing CEN− event: The applicator treats CEN− as multiple
link removals, which allows the applicator to reuse the process
used for CEL− event. For example, the node N6 removal in
Figure 1(a) is treated as two CEL−s, i.e., (N4, N6) and (N6, N8).
After processing the change event, the applicator creates CLE3. We
omit specific details due to space constraints.

V. DELTA COMPUTER

Delta computer initiates concurrent mitigation of placements for
all collected CLEs. However, CLEs may develop dependencies
among each other due to different CEs applied at different
times (Sec. V-A). These dependencies prevent concurrent
mitigation of CLEs. To address these dependencies, delta computer
computes query deltas (∆Qs) (Sec. V-B) after analyzing CLEs for
dependencies and merging all dependent CLEs (Sec. V-C).

A. Dependencies Among Change Log Entries

ISQP can concurrently process CLEs to mitigate invalid
placement mappings. Figure 4(1) shows CLEs of the example
GQP from Figure 1(d). However, in some instances, CLEs can
create dependency among each other. For example, CLE1 depends
on CLE3 due to the operator O3. In particular, CLE1 uses O3 as its
pinned upstream operators while CLE3 marks O3 for re-operator
placement. In the processing of CLE1, the operators are placed such

PREPRIN
T

O3
N4

O19

O20

O21
N10

CLE1

O11N7

O18N10

CLE2

O4

O3

O2O1 N2

N7

N4

N1

O19

O20

O21
N10

O11

O18
N10

Individual CLEs with conflicts Query Deltas1 2

State of O3 makes
CLE1 depend on CLE3

N7

O4

O3

O1 O2 N2N1

N4

N7
CLE3

Fig. 4: 1 Example change log entries from Figure 1(d), 2 Query
deltas (∆Q1 and ∆Q2) computed by delta computer after merging
dependent CLEs.

that the data from operator O3 pinned on node N4 can reach
via operators O19 and O20 to the operator O21 pinned on
node N10. While in the processing of CLE3, the operator O3 is
replaced from node N4 to another appropriate node such that the
data from operator O1 pinned on node N1 and O2 pinned on
node N2 can reach via O3 to the operators O4 on node N7.
Replacing O3 to a new node invalidates placement decisions
taken while processing CLE1. This not only prevents concurrent
processing of both CLEs but also makes the processing of CLE1
depend on CLE3. Thus, concurrent processing of dependent CLEs
results in inconsistencies. Therefore, we merge all dependent CLEs
to process them together. This prevents the overhead of finding the
right order of dependencies and processing among CLEs.

B. Query Delta

We define a query delta (∆Q) as a sub-graph of a DQP
containing operators with placement mapping affected by one or
more change events. In particular, for each operator o in ∆Q, the
following properties hold: (1) The root operators are either of type
sink or are in the state Placed. (2) The leaf operators are either of
type source or are in the state Placed. (3) All operators between leaf
and root operators are in the state “ToBePlaced”,“ToBeRePlaced”,
or “ToBeRemoved”. These properties allow the root and leaf
operators of a ∆Q to act as the pinned operators5. Thus, the operator
amender component needs to fix the placements of only the
operators between the root and leaf nodes.

The delta computer generates ∆Qs to address the issues arising
from the dependencies among CLEs. To this end, all dependent
CLEs are merged to compute a single unified ∆Q. For example, in
Figure 4(2) ∆Q1 was prepared by merging interdependent CLE1
and CLE3. This results in (1.) all ∆Qs become independent of
each other, and (2.) enables concurrent processing of ∆Qs. Next,
we present how the delta computer computes ∆Qs from a collection
of CLEs before calling placement amender.

C. Delta Computer

The delta computer, first, analyzes CLEs of a DQP within the
GQP to detect dependencies. Two or more CLEs are dependent
if they share operators in the state ToBePlaced, ToBeRemoved, or
ToBeRePlaced. For example in Figure 4(1), CLE1 and CLE3
share the operator O4 in state ToBeRePlaced. While CLE2 and
CLE3 also share the operator O6 it is in the state Placed.
Thus, CLE1 and CLE2 are in conflict but CLE2 and CLE3

5Operators that are to be placed on a pre-defined node.

Placement
Removal Phase

Placement
Addition Phase

Placement Change
 Event

Updated

N1

N5

N7

N10

An Instance of Operator Placement Amender

Input

O4

O3

O2O1 N2

N7

N4

N1

O19

O20

O21
N10

O4

O3

O2O1 N2

N7

N1

O19

O20

O21
N10

O4

O3

O2O1 N2

N7

N1

O19

O20

O21
N10

N2

N5
N7

N10

N6

Topology
Nodes

Topology
Nodes

Fig. 5: Expanded view of amender processing ∆Q1 from Figure 4.
The placement removal phase removes O4 from N6. The
placement addition phase adds places O4, O10, O11, and O12
as highlighted by the blue circles.

not. Dependent CLEs are merged by unioning their edges and
vertices. The delta computer repeats the conflict identification and
merging process until all CLEs become independent and satisfy
the properties described in Sec. V-B. Afterward, the delta computer
treats all CLEs as ∆Qs. For example, in Figure 4(2), the dependent
CLE1 and CLE3 are merged together to represent ∆Q1.

The delta computer uses a configurable thread pool to process
∆Qs concurrently. For each ∆Q, it invokes an instance of operator
placement amender and collects the placement change events
post-completion. The delta computer continues this process till all
∆Qs are processed. Finally, the delta computer returns the batch
of collected placement change events to the change event applicator
to fix all invalid placements. Next, we present details about the
operator placement amender and the placement change event.

VI. OPERATOR PLACEMENT AMENDER

The amender is responsible for amending the invalid placement
mappings captured by a ∆Q. Depending on the operator state,
the placement amender removes the mappings, finds new
mappings, or does both. Thus, the amender processes a ∆Q in two
phases: placement removal and placement addition (Sec. VI-A).
Multiple amenders can perform concurrent amendments of
∆Qs. However, this concurrent amendment may result in
conflicts and an inconsistent topology state. To address this, ISQP
supports pessimistic and optimistic placement amender strategies for
concurrency control (Sec. VI-B). Finally, amenders return placement
change events for fixing invalid placement mappings (Sec. VI-C)

A. Placement Amendment

Query deltas can contain operators in different states. For example,
∆Q1 in Figure 4 contains some operators in the state ToBePlaced
(O10,O11,O12) and some in ToBeRePlaced (O4). Operators in
different states need different mitigation actions. A ToBeRemoved
operator needs its placement mapping removed, a ToBePlaced
operator needs a new placement mapping, and a ToBeRePlaced
operator needs its placement mappings removed before an alternate
placement mapping is found. Thus, we first remove all invalid
placements before creating new placements to fix operators of a ∆Q.
This not only cleans up all the stopped or paused operators due to
query or node/link removal but also enables the reuse of resources
such operators occupy. Additionally, placements can be removed
and added incrementally, allowing placement amendment to access

PREPRIN
T

Central data
structure

Occ: 0
Avail: 8

Occ: 0
Avail: 8

O1

O2

O3
N2

N1
O4

O5

O6

Occ: 2
Avail: 6

Occ: 1
Avail: 7

O4

O5

O6

O4

O5

O6 N2

N1

N1
O1

O2

O3
N2

N1
O4

O5

O6

O4

O5

O6
N2

N2

N1

I1 I2

I1: Updates I2: Overwrites
updates from I1

I1 I2

(1) (2)

(a)

O1

O2

O3
N2

N1

Occ: 2
Avail: 6

Occ: 1
Avail: 7

N2

O4

O5

O6

O4

O5

O6

O4

O5

O6

O1

O2

O3
N2

N2

N1
O4

O5

O6

O4

O5

O6
N2

N1

Occ: 3
Avail: 5

Occ: 3
Avail: 5

O2

O3

O1

N2

O4

O5

O6

O1

O2

O3
N2

N2

N1
O4

O5

O6

O4

O5

O6
N2

N1

Occ: 1
Avail: 7

Occ: 2
Avail: 6

O2

O3

O1

N2
N2

N2

N1

N2

N2

N1
O1

O2

O3
N2

N2

N1
O4

O5

O6

O4

O5

O6
N2

N1

Occ: 1
Avail: 7

Occ: 2
Avail: 6

O2

O3

O1

N2

I1 I2 I1 I2 I1 I2 I1 I2

(1) (2) (3) (4)

Central data
structure

Central data
structure

Central data
structure

Central data
structure

(b)

O1

O2

O3
N2

N2

N1

N2

N1

O2

O3

O1

N2

O4

O5

O6

O4

O5

O6
N2

N1
O4

O5

O6
N2 N2

N1

Occ: 1
Avail: 7

O4

O5

O6

O1

O2

O3
N2

N2

N1

N2

N1

Occupied: 3
Available: 5

Occupied: 3
Available: 5

O2

O3

O1

N2

O4

O5

O6

O4

O5

O6
N2

N1

Occ: 0
Avail: 8

O4

O5

O6
N2

O1

O2

O3
N2

N2

N1

N2

N1

O2

O3

O1

N2

O4

O5

O6

O4

O5

O6
N2

N1
O4

O5

O6
N2

 (2)

N1
O1

N2
O6

N2

N1

O2

O3

O1

N2

 (4)

O1

O2

O3
N2

N2

N1

N2

N1

O2

O3

O1

N2

O4

O5

O6

O4

O5

O6
N2

N1
O4

O5

O6
N2

I1 I2

[+1] [+2] [-2]
[-1]

N2

N1

Occupied: 2
Available: 6

Occupied: 1
Available: 7

O4

O5

O6

Central data
structure

Occ: 3
Avail: 5

O1

Occ: 3
Avail: 5

Occ: 3
Avail: 5

Occ: 3
Avail: 5

Occ: 3
Avail: 5

Occ: 0
Avail: 8

Occ: 0
Avail: 8

Occ: 0
Avail: 8

Occ: 0
Avail: 8

I1 I2 I1 I2 I1 I2

O2

O3

Occ: 0
Avail: 8

Occ: 0
Avail: 8

Occ: 0
Avail: 8

Occ: 1
Avail: 7

Occ: 2
Avail: 6

Occ: 0
Avail: 8

Occ: 0
Avail: 8

Occ: 1
Avail: 7

Occ: 3
Avail: 5

 (1) (3)

Local copyLocal copy Updated Central
data structure

Updated Central
data structure

Updated Central
data structure

(c)
Fig. 6: (a) Concurrent placement amendments: (1) Amender instances I1 and I2 concurrently processing ∆Qm and ∆Qn using central data
structure. (2) Example inconsistent resources; (b) Pessimistic approach: (1) Instances I1 and I2, and common topology nodes. (2) I1 locks
the topology nodes while I2 waits. (3) I1 finishes and I2 locks the topology nodes. (4) I1, I2, and the central data structure post-processing;
(c) Optimistic approach: (1) I1 and I2 post-processing, the local copies, and central data structure containing topology resources. (2)
I1 updates node N1. (3) I1 and I2 update nodes N2 and N1 respectively. (4) I2 updates node N2.

only limited topology nodes and progress in case successive
placement addition step fails. Therefore, the amender processes
∆Qs in two phases: placement removal and placement addition.
Placement Removal Phase removes operators in the states ToBeR-
emoved or ToBeRePlaced, freeing up resources. First, it analyzes
the input ∆Q to identify topology nodes where these operators are
placed. Second, it retrieves the identified nodes from the catalog.
Upon completion, this phase (a) removes current operator mappings,
(b) updates operator states from ToBeRemoved or ToBeRePlaced to
ToBePlaced, and (c) updates topology nodes with released resources.
For instance, Figure 5 illustrates how this phase processes∆Q1, iden-
tifies node N6, removes operator O4’s placement, changes its state
to ToBePlaced (green), and updates N6’s resources. Additionally,
this phase asynchronously signals the undeployment component to
This phase is skipped if a ∆Q has no operators in these states.
Placement Addition Phase finds new placements for operators in
the state ToBePlaced. First, this phase uses the pinned root and leaf
operators in a ∆Q to select the topology path and identify topology
nodes for the placement. For example, in Figure 5, the placement
addition phase selects topology path connecting nodes N4 with
N8 and N10 (see Figure 1(a)). Second, it uses any configured
centralized placement algorithm to find placement mappings for
all operators in the state ToBePlaced. Upon successful processing,
the addition phase (a.) adds mappings to the operators, (b.) updates
the operator state from ToBePlaced to Placed, and (c.) updates
the topology nodes with occupied resource information. The use of
∆Qs instead of whole DQP enables ISQP to make incremental
placement decisions to fix the placement mappings of the affected
operators. This design decision allows ISQP to use existing
placement algorithms without making any changes to their internal
implementation. Figure 5 shows the output sub-graph with all
newly placed operators shown by blue circles and their placement
annotations. This output sub-graph represents the placement change

event used to fix invalid or missing placements (Sec. VI-C). Finally,
this phase makes asynchronous calls to the deployment component
to add all ToBePlaced or ToBeRePlaced operators on the underlying
infrastructure. Note that the placement addition phase is skipped
for ∆Qs that contain no operator in state ToBePlaced.

B. Concurrent Placement Amendment: Challenges and Solutions

Challenges: The delta computer invokes multiple instances of place-
ment amenders to concurrently fix ∆Qs with invalid placements.
This concurrency allows ISQP to reduce the overall optimization
time. However, DSPEs maintain a centralized data structure to
store the number of resources occupied or available at various
topology nodes to use them as appropriate placement locations [44],
[45]. The placement amender instances concurrently update this
central data structure to free (placement removal phase) or occupy
(placement addition phase) resources from various topology nodes.
This concurrent update can potentially leave the centralized data
structure with inconsistent resource information. This inconsistent
resource information adversely affects placement decisions as they
either lead to over or under-provisioning of topology nodes.

In Figure 6a, we highlight the conflict between two concurrent
amender instances (I1 and I2). Particularly, Figure 6a(1) shows I1
and I2 before processing ∆Qn and ∆Qm, respectively. For brevity,
we keep the two ∆Qs simple and do not show their pinned operators.
The central data structure shows the occupied and available slots [37]
on the topology nodes N1 and N2. We assume each operator
takes one slot. The actual number of slots an operator occupies
depends on the placement algorithm. I1 updates will be lost due to
I2 updates in this example. Figure 6a(2) shows ∆Qn, ∆Qm, and the
updated topology nodes after processing. The placement addition
phase of I1 places ∆Qn operators on N1 and N2. At the same
time, the placement removal phase of I2 removes the placements of
∆Qm operators from N1 and N2. Next, both instances update the

PREPRIN
T

topology nodes with their respective views of the available and oc-
cupied slots. This results in the lost updates from I1. Ultimately, this
creates a view where nothing appears to be placed on N1 and N2.
ISQP uses one of the two strategies to prevent these inconsistencies
from occurring: (1) pessimistic or (2) optimistic strategy.
Pessimistic Placement Amendment Strategy: The pessimistic
strategy uses a two-phase locking strategy (similar to that used
in database systems [46]) to prevent concurrent access to topology
nodes. First, each instance goes through the growing phase to acquire
fine-grained locks over the topology nodes before performing the ad-
dition or removal phase. Second, it processes the∆Q and accordingly
updates the resources on the locked topology nodes. Finally, post-
processing or failure, it goes through the shrinking phase, where
the locks are released. Our strategy uses a “back-off and retry”
mechanism to prevent deadlock and starvation and ensures a strict
order of acquiring locks on the topology nodes [47], [48], [49].

Figure 6b(1) shows the pessimistic approach to processing the
two conflicting instances (I1 and I2) from Figure 6a. First, I1
acquires locks on node N1 to N2 and, after processing ∆Qn,
updates the resources on the locked topology nodes (Figure 6b(2)).
While the processing of I1 continues, I2 waits and retries to acquire
locks on N1 and N2. Second, I1 releases the locks upon the
completion of its processing. I2 acquires the locks on N1 to N2
in a strict order and processes ∆Qm (Figure 6b(3)). Finally, the
topology nodes N1 to N2 show a correct view that only the
operators from ∆Qn are placed on the topology nodes after the
completion of I2 (Figure 6b(4)).
Optimistic Placement Amendment Strategy: The optimistic
strategy allows operator placement instances to process ∆Qs
without acquiring exclusive locks over the topology nodes. Similar
strategies have been proposed in the literature for the problem
of large-scale workload deployments [36], [38]. However, they
do not consider incrementally performing placement removal or
replacement, a key distinguishing feature of ISQP. The optimistic
strategy uses an optimistic concurrency control protocol to improve
concurrency and prevent inconsistencies. In our setup, we maintain
a shared view of the topology data structure and provide the
possibility to create local copies that are visible exclusively to an
amender instance. In particular, each amender instance operates
only on local copies of the topology nodes. Thus avoiding the need
to acquire fine-grained locks on the shared data structure. However,
post-processing, each instance performs an optimistic validation
to update the shared data structure atomically.

In the optimistic validation, the local copies and shared view of
the topology nodes are compared to verify if sufficient resources
are available to complete an amendment phase. This mechanism
prevents the probability of validation failure (resulting in lost
work) due to the updation of the shared data structure after the
start of the amendment phase. We thus call it optimistic validation,
which differs from the validation performed in classical optimistic
concurrency control protocols.

The optimistic validation, first, iterates over the topology nodes
used in the placement. Second, it locks the entry in the central
data structure for each iterated topology node. Third, it checks
if the number of resources required to complete the amendment
phase is available in the shared data structure entry. Note that this

check will always pass for the placement removal phase. If the
check passes, the validation phase updates the resources in the
shared data structure, changes the placement mappings, updates
the operators’ states, and releases the lock. Otherwise, it terminates
further processing by the amender instance and marks it partially
successful if any prior topology node iterations were validated.

Figure 6c illustrates the optimistic operator amender strategy.
Figure 6c(1) shows I1 and I2 with local copies of topology nodes
N1 and N2 after processing ∆Qm and ∆Qn. In addition, it shows
the shared data structure containing the topology nodes N1 and
N2. I1 starts the validation before I2. In Figure 6c(2), I1 sends the
slots (1) occupied on N1 during the placement addition phase. I1
locks the node N1 and performs the optimistic validation to check
if sufficient slots are available. As the validation succeeds, I1 updates
the slots of the shared data structure. In Figure 6c(3), I1 continues
the validation phase for N2 while I2 starts the validation phase
for N1. Like for N1, I1 updates the slots for N2 in the shared
data structure after successful validation. After that, I1 completes its
validation. However, I2, during the validation, finds the local and the
shared view of the node N1 different. It uses the released slots (-2)
to compute the updated available (7) and occupied (1) slots for the
shared copy of N1. As the number of updated available slots is non-
negative (sufficient resources available), I2 updates the shared data
structure for the node N1. Figure 6c(4) shows I2 perform validation
for N2. Similar to N1, I2 finds the local and the shared view of
N2 different. I2 used the released slots (-1) to compute the updated
occupied (2) and available (6) slots for N2. As the number of
updated available slots is non-negative, I2 updates the slot values for
N2 in the shared view. After that, I2 also completes its validation.

C. Updating Invalid Placements

Placement amender instances produce placement change events
CEP) reflecting the fixed operator placement mappings. Similar
to a ∆Q, a CEP represents a sub-graph of connected operators
with updated placement information. Figure 5 shows an amender
instance producing a CEP after processing ∆Q1. If the instance fails
or is only partially successful, the CEP contains either no or only
partially updated placement information, respectively. This allows
a CEP to communicate successful, partially successful, or failed
processing of a ∆Q.

After fixing the invalid placements, each placement amender
instance updates the new placements in the catalog (Sec. III). To this
end, a placement amender instance iterates over the operators in the
CEP and updates the metadata (operator mappings and state) of the
corresponding operators in the GQP. This marks the completion of
the external change event processing. Afterward, ISQP fetched
the next batch of CEs for processing.

VII. EVALUATION

We experimentally evaluate ISQP using two real-world
datasets and emulated sensor-edge-cloud infrastructure. Specifically,
we compared ISQP with the state-of-the-art operator placement
approach, which performs holistic placement with one CE at a time
model. We further consider another baseline with a batch-at-a-time
model. We found that (i) ISQP reduces the optimization overhead
by 11.2×; (ii) ISQP scales linearly as we increase the batch size

PREPRIN
T

and the number of amender instances; (iii) optimistic strategy outper-
forms the pessimistic strategy even under a high conflict ratio; and
(iv)ISQP limits the number of re-configurations required to resume
the interrupted query plans, which reduces the adverse effects on
the processing latency as the infrastructure or workloads evolve.

A. Experimental Setup

Baselines: We implement ISQP and the two baselines in Nebu-
laStream [17], a state-of-the-art DSPE. (1) NES: Holistic operator
placement with one CE at a time model: This is the default behavior
of the NebulaStream and other state-of-the-art DSPEs. This baseline
first updates the topology (if applicable) and then performs holistic
amendments of all affected DQPs, serially. We also extended the
baseline to support CET events. (2) HSQP: Holistic stream query
placement with a batch of CEs at-a-time model: HSQP performs
holistic and concurrent operator placements by first applying a batch
of CEs to the topology and the GQP. Then, it concurrently performs
holistic amendment of all affected DQPs in the GQP. HSQP
allows us to evaluate the benefits of concurrent amendments.
Topology: We base our experiment on two emulated infrastructures:
(1) FIT IoT test lab [50], an open access 3-layered sensor-edge-cloud
infrastructure test bed used by the research community to conduct
experiments [51], [52], [53] involving many small wireless sensor
devices, and (2) a combination of OpenCelliD database [54] and
the schedule information from a public transport company [55], we
refer to this as public transport use case in the remaining of section.
Both represent a realization of sensor-edge-cloud infrastructure
using three layers: cloud devices, intermediate edge devices, and
IoT devices.
Change Events: We use the stream query generator from [24]
to generate query CEs. The generator produces equivalent stream
queries. The optimizer of NebulaStream merges these new queries
(CEQ+ events) to update DQPs and produce operators with invalid
placements. Additionally, we remove queries in fixed intervals to
generate CEQ− events during our experiments. We also use synthetic
data from our open-source tool that combines OpenCelliD and
trains schedule information to generate topology CEs [56]. The tool
selects a fixed area, time interval, train trajectories, and cell towers
to generate a file containing train movements that represent CEL−
and CEL+ events.
System setup: We set up the system for each experiment by
deploying initial queries (see below for the number of queries).
This allows us to represent a DSPE with already running queries
in which CEs invalidate the placement mapping. To conduct our
experiments, we submit different types of CEs to invalidate the
placements of deployed queries either by removing or adding
queries or by removing or adding topology links (see Sec. IV).
Methodology: We run each experiment 7 times and report the
average optimization time as the time between the arrival of the
first CE and the processing of the last CE divided by the number CEs.
We use the following parameters to compare the efficiency of NES,
HSQP, and ISQP: (1) Batch Size: The number of CEs processed
at-a-time. (2) Number of Amender Instances: The number of threads
used for performing concurrent amendment. (3) Conflict Ratio: The
ratio of CEs that affect operators placed over common topology
nodes to the total number of CEs in a batch to be processed.

Heuristics Cost
(a)

0

100

200

300

400

Av
g.

 O
pt

im
iza

tio
n

 T
im

e
(s

ec
.)

12.7
34.7

121.9

IS
Q

P

H
SQ

P

N
ES

14.4
123.5

315.5

IS
Q

P

H
SQ

P

N
ES

Heuristics Cost
(b)

0

50

100

En
er

gy
 C

on
su

m
pt

io
n

 (W
at

t)

90.1 89.6
74.8

IS
Q

P

H
SQ

P

N
ES

92.1 93.0

74.1

IS
Q

P

H
SQ

P

N
ES

Heuristics Cost
(c)

0

2

4

6

M
em

or
y

Co
nu

m
ed

 (K

B)

1.6

5.5 5.8

IS
Q

P

H
SQ

P

N
ES

2.0

4.2 4.2

IS
Q

P

H
SQ

P

N
ES

Fig. 7: Effect of incremental and concurrent amendments.

(4) Placement Strategy: The optimistic or pessimistic approach for
performing concurrent operator placements (Sec. VI-B).

B. Experiments

This section presents a summary of our micro and macro
experiments conducted to perform an in-depth analysis of ISQP.
For all experiments (unless stated otherwise), we used a server with
an AMD EPYC 7742 CPU and 1 TB of RAM. These experiments
assess the impact of incremental and concurrent amendments,
the scalability of our approaches, a comparison of pessimistic vs.
optimistic amendment strategies, the impact of query CEs, the
impact of topology CEs, and impact on the query execution latency
(from Sec. VII-B1 to Sec. VII-B6 respectively).

1) Effect of Incremental and Concurrent Amendments:
We measure average optimization time, energy, and memory
consumption of ISQP, HSQP, and NES using different types
of placement strategies.
Setup: We emulate a FIT IoT test lab infrastructure with 768 nodes
(Sec. VII-A). For these experiments, we switched to servers with
Intel® Xeon® Gold 6326 CPU and 1 TB of RAM, as the one with
AMD do not have performance counters for CPU energy efficiency.
The top (cloud) and intermediate (edge) layers contain 64 nodes each.
All nodes in the top layer are connected to all nodes in the intermedi-
ate layers. The lower (sensor) layer contains 640 nodes representing
IoT devices producing data. We divide nodes in the lower layer into
groups of 10 nodes each. Each group is then connected to one of
the 64 intermediate nodes. We configure HSQP and ISQP with
batch size and amender instances of 8 and use only the optimistic
amendment strategy. We initialize the system with 1024 queries.
Each query consumes data from two distinct sensors, applies filters
and maps, and unions both transformed streams before writing the
stream to an output sink (located on a top-layer node). We select the
number of queries as the multiple of 8, so the CE batches are full. We
submit 3072 query addition events (CEQ+) with 50% conflict ratio
(representing the average case scenario) to the DSPE to perform
our evaluations. We used only CEQ+ events to prevent the influence
of event types on the observations. We conduct this experiment by
setting both heuristics and cost-based placement strategies.
Results: Figure 7(a), (b), and (c) shows the average optimization
time, energy consumption, and memory consumption of different
approaches for both heuristics and cost-base operator placement
algorithms. First, ISQP shows a speed up in the optimization
time by 2.7× and 8.5× compared to HSQP and 9.5× and 21.9×
compared toNES when using heuristics- and cost-based placement
algorithms, respectively. Second, the single-threaded NES
approach consumed 20% less energy compared to multi-threaded
ISQP and HSQP approaches. Third, the memory consumption
of ISQP is 3.4× and 2.1× less compared to up to ISQP

PREPRIN
T

1 2 4 8 16 32 64

(b)

13.4
9.9 8.4 7.4 7.4 7.1 7.2

69.1

39.0

25.5

18.9 19.0 18.6 18.9

1 2 4 8 16 32 64

(a)

13.3
9.9 8.2 7.4 7.1 6.9 6.4

74.7

42.9

26.7

18.9
17.1

15.3
14.3

ISQP HSQP

1:1
0

20

40

60

80
Av

g.
 O

pt
im

iza
tio

n
Ti

m
e

 (s
ec

.)
70.5 ISQP HSQP NES

Fig. 8: Scalability w.r.t. (a) batch size and (b) amender instances.

and HSQP approaches when using heuristics- and cost-based
placement algorithms, respectively.
Discussion: We show that ISQP achieves the best optimization
time and memory consumption respective of the operator placement
algorithm. This is due to two reasons. First, ISQP identifies and
concurrently amends the placement of only the operators affected by
the CEs. This significantly reduces the number of operators that need
to be amended and parallelizes the amendment process. In particular,
ISQP processes ∆Qs containing overall 6144 operators while
both HSQP and NES perform placement amendments of ∆Qs
containing 271872 operators. Second, due to the reduced number of
operators, the memory footprint of ISQP also reduces. However,
as ISQP uses 8 threads to perform concurrent placement
amendments, it shows 20% higher energy consumption compared
to NES. This increase can be seen in HSQP as well, which
leverages concurrency for placement amendment.

2) Scalability: We investigate the scalability of ISQP, HSQP,
and NES by varying the batch size and amender instances.
Setup: We use the topology setup from the previous experiment.
We initialize the DSPE with 4096 queries and then submit another
4096 queries representing CEQ+. We increased the CEQ+s to evaluate
a larger spectrum of batch size and thread count parameters. We
fix the conflict ratio to 50% to represent the average case scenarios.
We conducted two experiments: (1) We fixed the amender instances
to 8 and varied the batch size from 1 to 64; (2) We fixed the batch
size to 8 and varied the amender instances from 1 to 64.
Results: Figure 8(a) shows the average optimization time for NES.
As this baseline only processes one event at a time, we fixed the
amender instances and batch size to 1. Additionally, the figure
shows the results of varying batch sizes for ISQP and HSQP.
With increasing batch size, the optimization time reduces by up
to 2.2× for ISQP and 5.3× for HSQP. However, no significant
performance gain was observed when the batch size exceeded the
thread count. Overall, ISQP outperforms NES and HSQP by
a factor of 4.4×, even for a batch size of one.

Figure 8(b) shows the results for varying amender instances.
Increasing amender instances reduces optimization overhead by
2.1× for ISQP and 5.1× for HSQP. However, no significant
performance gains were observed as the thread count exceeded the
batch size. Overall, ISQP outperforms NES and HSQP by a
factor of 4.8×, even for a thread count of one.
Discussion: These experiments show that batch size and amender
instances reduce the optimization overhead. First, a larger batch
size allows processing more CEs together. In particular, batching
allows identifying all operators with invalid placement mappings to
compute ∆Qs. Second, multiple amender instances allow concurrent
processing of ∆Qs. This concurrent amendment allows for quickly
fixing all invalid placements, leading to a lower optimization time

0% 25% 50% 75% 100%
Change Events Conflict Percentage

0

50

100

150

200

Op
tim

iza
tio

n
Ti

m
e

 B
re

ak
up

 (%
)

22
.2

6.322
.3

6.3 31
.9

9.126
.4

7.7 41
.3

12
.1

32
.0

9.4 49
.7

15
.2

36
.6

10
.9

61
.6

18
.8

42
.9

12
.9

HSQP-P
HSQP-O

ISQP-P
ISQP-O

Applicator
Amender

Lock

Fig. 9: Impact of pessimistic and optimistic approaches on
optimization time with varying conflict ratios.

(Sec. VI-B). Third, ISQP requires a lower optimization overhead
even with a small thread count in comparison to NES or HSQP.
This is because ISQP operates only over operators with invalid
placements instead of the entire query plan. This limits the number
of operations the placement amendment component performs,
resulting in a lower optimization overhead.

3) Pessimistic Vs. Optimistic Amendment Strategies: We inves-
tigate the impact of optimistic and pessimistic placement amender
strategies on the optimization time of ISQP, HSQP, and NES.
Setup: We use the topology setup from experiment Sec. VII-B1.
We configure HSQP and ISQP with batch size and amender
instances of 8 and use both optimistic (O) and pessimistic (P)
placement amendment strategies. We use a heuristic-based
placement algorithm that places operators closer to the source [35].
We initialize the system by deploying 1024 queries. We conduct
multiple experiments by submitting 3072 queries representing
CEQ+s with varying conflict ratios. Increasing the conflict ratio leads
to the usage of common topology nodes for operator placement.
Results: Figure 9 shows the percentage breakdown (change event
applicator, lock acquisition, and placement amendment) of the
optimization time spent by ISQP and HSQP. First, we observe
that the optimization time increases by 2×−3× with an increase in
the conflict ratio to 100% for both HSQP and ISQP irrespective
of concurrency control mechanism (numbers above the bars).
Second, we observe that the ratio of time spent by pessimistic
approaches (HSQP-P and ISQP-P) for acquiring locks increases
with the percentage of conflicts. For 100% conflicts, the time spent
acquiring locks increases up to 30% of the overall optimization
time. However, optimistic approaches only spend less than 1% of
their time in the validation phase across different conflict ratios.

Additionally, we record the abort rate for pessimistic approaches
(not shown due to limited space). Here, the abort rate is defined as the
total percentage of attempts that failed to acquire locks successfully
over topology nodes. Overall, we observe that as the percentage of
conflicts among the query change events increases from 0% to 100%,
the abort rate for ISQP increases from 0% to 77.6%. However,
HSQP shows a constant, high abort rate of close to 99.9% except
when the conflict ratio between query change events is 0%.
Discussion: The increase in the conflict ratio adversely affects the
optimization time as the placement amender instances try to place
affected DQPs on common topology nodes. Common topology
nodes lead to contention during the lock acquisition and validation
phase of pessimistic and optimistic approaches, respectively. In
particular, optimistic approaches do not show a high lock acquisition
ratio as they acquire lock only on a single topology node at the
time of validation. On the other hand, pessimistic approaches show
a very high lock acquisition ratio in the overall optimization time

PREPRIN
T

32Q+/0Q- 30Q+/2Q- 28Q+/4Q- 24Q+/8Q- 16Q+/16Q-
0

25

50

75

100
Av

g.
 O

pt
im

iza
tio

n
Ti

m
e

 (s
ec

.)

14
.9

14
.6

13
.4

11
.5

8.25.5 6.0 5.5 5.3 5.4

71.3 67.0 62.5
53.9

36.4

NES HSQP ISQP Amender Applicator

Fig. 10: Impact of changing ratio of CEQ+ and CEQ− events.

due to a high abort rate. The main reason for this high abort rate
is the use of the “back-off and retry” mechanism that tries to lock
all involved nodes in one step (cf. Sec. VI-B). As the percentage
of conflict increases, the number of common topology nodes (used
in the concurrent processing of affected DQPs) also increases.
Therefore, the number of aborts in HSQP (as it performs a holistic
placement) is also 104× to 105× higher compared to ISQP.

4) Effect of Query Additions and Removals: We investigate the
impact of processing a mix of query addition and removal change
events on the optimization time of ISQP, HSQP, and NES.
Setup: The topology remains the same as in the previous
experiments. We initialize the system with 4096 queries, with a
50% conflict ratio, and process 128 batches of CEs. Each batch
contains 32 CEs (a combination of CEQ+ and CEQ−). In addition, we
set the amender instances to 32 such that ISQP and HSQP can
concurrently process all queries affected by the 32 CEs. Note that we
chose a larger batch size to experiment with more combinations of
CEQ+ and CEQ−. We vary the ratio of CEQ+ and CEQ− events within
a batch across different experiments and report the aggregated
optimization time.
Results: Figure 10 shows the impact of varying the ratio of
CEQ+ and CEQ− events on the optimization overhead by different
approaches. We observe that ISQP outperforms NES by a
factor of 10× and HSQP by a factor of 2×. Furthermore, the
optimization time reduces as the number of CEQ− events increases.
Discussion: This experiment highlights two crucial aspects: First,
ISQP incurs low optimization overhead even for a mix of CEQ+
and CEQ− events. This reduced optimization overhead is due to
ISQPs’ incremental and concurrent processing. Second, increasing
CEQ− events in a batch reduces overall optimization time because
(1) the change event applicator takes less time as it does not perform
the query optimization steps to process CEQ− events, and (2) the
number of operators in the affected DQPs reduces.

5) Effect of Topology Change Events: We investigate the
impact of topology change events on the optimization time.
Setup: We conduct this experiment by simulating an evolving
three-layer infrastructure. The infrastructure includes 100 nodes
representing suburban trains in the lower layer. Ten of these nodes
connect to one of the 10 base stations in the intermediate layer. The
top layer consists of 10 nodes (in a private data center) connected
to all intermediate nodes.

As trains move, they disconnect from one base station and recon-
nect to another, generating topology CEs. Specifically, we simulate
4000 pairs of link removal (CEL−) and addition (CEL+) events, each
representing the disconnection and reconnection of a suburban train
from one base station to another during its journey. These pairs are
ordered so that only one train moves from one base station to another
at a time. For instance, the first 10 pairs of topology CEs depict trains

0%
0

20

40

60

80

Av
g.

 O
pt

im
iza

tio
n

Ti
m

e
(s

ec
.)

69.1

0% 25% 50% 75% 100%

8.4 3.9
9.9

4.1 8.7 4.4
10

.0
5.7

13
.1

10
.516

.2
12

.7 16
.2

15
.121

.6
18

.0 19
.6 20

.829
.6

26
.8

NES
HSQP-P

HSQP-O
ISQP-P

ISQP-O

Fig. 11: Impact of varying conflicts for topology CEs.

disconnecting from each of the 10 base stations and reconnecting
to the neighboring base station. After 100 pairs of such topology
CEs, all trains initially covered by one base station at the start of the
experiment reconnect to the neighboring base station.It’s important
to note that node removal (CEN−) and addition (CEN+) events can be
represented as link removal and addition. Consequently, we conduct
this experiment solely using CEL− and CEL+ events.

We report the effect of conflict ratios on the overall optimization
time. This allows us to mimic scenarios where topology changes
might affect multiple queries using common topology nodes for
placements. To this end, we initialize the DSPE with 4096 queries
with varying conflict ratios for every experiment. We set the batch
size to 10 to process 10 trains moving simultaneously from one
base station to another. In addition, we further set amender instances
to 10 so that all 10 affected DQPs deployed on each of the moving
trains can be processed concurrently.
Results: Figure 11 shows the results of varying conflict ratios for
topology CEs: ISQP outperforms NES by 14.8× and HSQP
by 2.4×. The optimistic approach works well in contrast to the
pessimistic approach for both HSQP and ISQP. As the conflict
ratio increases, the performance difference between ISQP and
HSQP reduces.
Discussion: For a higher conflict ratio, we observe that ISQP
takes similar, if not worse, time to optimize as HSQP. This high
optimization time for ISQP is due to (1) more operators and topol-
ogy nodes being involved during placement amendment and (2) the
locking contention increases due to common nodes being involved.
This is expected as ISQP relies on limited operators processed
during placement amendment to improve optimization time.

6) Query Execution Latency: Lastly, we analyze the impact
on running DQPs when a DSPE is subjected to CEs.
Setup: We set up a cluster of NebulaStream to run on a three-layered
hierarchical infrastructure of a public transport company based on
open-source schedule information and the OpenCelliD database.
The bottom layer contains 20 nodes representing the suburban trains
producing journey data, which are connected to 10 intermediate
nodes representing base stations. The top layer contains only 1 node
in the cloud data center, connected to all intermediate nodes. We
initialize the system by deploying 100 queries that analyze journey
data produced by the suburban trains. In particular, we deploy groups
of 10 queries (forming a DQP), each consuming data from 2 distinct
suburban trains. To experiment, we submit topology CEs to emulate
the movement of 10 suburban trains per second for 60 seconds (1
suburban train from each base station). In particular, after deploying
all DQPs, we submit topology CEs from the 20th to 80th second of
the total experiment length. These movements interrupt the running
DQPs and, thus, affect the processing time latency of in-flight tuples.
Results: Figure 12 shows the impact on the processing time latency

PREPRIN
T

20 40 60 80 100
Runtime (sec.)

(c) NES

St
ar

t

En
d

20 40 60 80 100
Runtime (sec.)

(b) HSQP

St
ar

t

En
d

20 40 60 80 100
Runtime (sec.)

(a) ISQP

101

103

105
Av

g.
 P

ro
ce

ss
in

g
Ti

m
e

La
te

nc
y

(m
s) St

ar
t

En
d

Fig. 12: Impact on the processing time latency.

of running queries. We report the observations from the 10th
second of the experiment to discard the cold start of the queries.
The maximum processing latency of the deployed DQPs reaches
up to 5ms during normal operation (shown with the blue line).
As topology CEs start to arrive, the ISQP leads to an average
processing latency of 16.7ms (Figure 12(a)). These peaks can be
observed every second immediately after concurrently mitigating
the invalid operator placements. HSQP leads to an average
processing latency of around 33.1ms (Figure 12(b)). However,
baseline NES fails to complete the re-operator placement of
affected DQPs between successive topology events CEs and leads
to an average processing latency of 14701.5ms (Figure 12(c)).
Overall, ISQP achieves up to 2× and 880.2× lower average
processing latency compared to HSQP and NES, respectively.
Discussion: NES that holistically and serially processes affected
queries fails to keep up with the rate of CEs. Thus, increasing
the peak processing latency makes the DSPE unusable for
latency-sensitive applications. In contrast, HSQP reduces the
deployment latency compared to NES, as it performs holistic
but concurrent placements of affected DQPs. However, ISQP
reduces the deployment latency by 880.2× compared to baseline
NES as it places and re-configures only the affected operators
to resume interrupted DQPs. Overall, our approach enables
latency-sensitive applications to continue operations even in the
presence of dynamic infrastructures.

VIII. RELATED WORK

Distributed Stream Processing Engines DSPEs allow the
processing of millions of events in a continuous stream. The
literature has proposed DSPEs for cloud (Flink [16], Storm [15],
Spark [57]), edge (CSA [58], Frontier [59]), and unified edge-cloud
(NebulaStream [17]) infrastructures. Unlike the cloud, the edge
infrastructure consists of volatile and mobile devices undergoing
frequent changes. ISQP focuses on handling these changes in a
unified edge-cloud infrastructure by amending affected placement
assignments. These amendments allow a DSPE to continue query
execution even under frequent infrastructure changes.
Operator Placement: The operator placement problem, particularly
for geo-distributed environments, has been well studied [22], [35],
[40], [34], [42], [60], [61], [62]. Operator placement allows a DSPE
to schedule the execution of queries to satisfy specific service-level
goals [35]. These works apply a combination of heuristics, costs, ma-
chine learning, and centralized or decentralized methods to optimize
operator placement for these goals. ISQP proposes a mechanism
that allows easy integration of existing operator placement algo-
rithms into DSPEs operating over edge-cloud infrastructures.
Handling Dynamism using Operator Placement: Some operator
placement works have considered dynamism but only in the data

characteristics [21], [41]. Luthra et al. [39] proposed a solution that
transitions the running plan upon detecting the quality of service
violation-based query performance. Another group of works [63],
[64], [65], [66], [67], [68], [69], [70], [71] have proposed solutions
for handling infrastructure changes by replicating and re-configuring
operators on pre-defined nodes in a cloud-only infrastructure. To
our knowledge, no existing work proposes a solution for handling
invalid placement mapping due to query and infrastructure changes
in a unified edge-cloud infrastructure.
Concurrency Control: This is a well-studied problem in database
transactions [72], [73], [74]. Chen et al. [75] and Fuchs et
al. [76] proposed novel pessimistic and optimistic protocols for
handling concurrent updates on a graph database. ISQP treats
placement amendments as transactions and, inspired by the above
general concurrency control works, performs operator placement
amendments concurrently. It leverages the characteristics of the
operator placement process to modify optimistic concurrency
protocol to define an optimistic validation step.
Large-Scale Workload Schedulers: Our work is also related to
workload schedulers [77], [78]. Systems such as Mesos [45] and
Hadoop-on-demand [44] were proposed to support concurrent
scheduling of workloads by partitioning the cluster. Omega [36]
uses an optimistic approach for concurrent workload scheduling
in a shared-state environment. Borg [79] uses a similar scheduler
to perform the placement of workloads concurrently. [38] extended
Omega’s approach to perform a fine-grain validation for conflict
identification before dispatching the scheduled workloads. Like
ISQP, these approaches have visibility over the entire cluster
and support concurrent scheduling of the workloads. However,
ISQP computes fine-grained query deltas with missing or invalid
placements for scheduling. This allows ISQP to minimize the
operator placements to amend and thus reduce the overall optimiza-
tion overhead. In addition, ISQP also supports changes in the
underlying infrastructure and fixes placements of affected queries.

IX. CONCLUSION

We proposed ISQP, a framework that allows DSPEs to keep
valid operator placement mapping under continuous query and
topology changes. ISQP uses the change event applicator to
process external change events and compute change log entries to
capture operators whose assignments are affected. These entries
allow ISQP to easily identify the affected operators among thou-
sands of queries. Next, using the delta computer, ISQP combines
change log entries to reduce redundant operators and compute query
deltas to perform incremental placement amendments. To this end,
we proposed strategies to concurrent amendment strategies to speed
up the optimization process. Our experimental evaluation showed
that ISQP incurs 23.3× less optimization overhead and reduces
the processing latency by 1093× compared to the baseline while
keeping up with high-frequency queries and topology changes.
Acknowledgement. This work was funded by the German Federal
Ministry for Education and Research as BIFOLD - Berlin Institute
for the Foundations of Learning and Data (ref. 01IS18025A
and 01IS18037A). We thank Dr. Varun Pandey for his valuable
discussions and suggestions.

PREPRIN
T

REFERENCES

[1] Xovis, “Public transport - automatic passenger counting — xovis,” https:
//www.xovis.com/solutions/transportation, 2024, (Accessed on 07/26/2024).

[2] DataFromSky, “Deep traffic video analysis - datafromsky,”
https://datafromsky.com/, 2024, (Accessed on 07/19/2024).

[3] S. Abdulmalek, A. Nasir, W. A. Jabbar, M. A. Almuhaya, A. K. Bairagi,
M. A.-M. Khan, and S.-H. Kee, “Iot-based healthcare-monitoring system
towards improving quality of life: A review,” in Healthcare, vol. 10, no. 10.
MDPI, 2022, p. 1993.

[4] T. C. AB, “Smart public transport,” (Accessed on 03/22/2023).
[Online]. Available: https://business.teliacompany.com/internet-of-things/
smart-public-transport

[5] M. of Digital Development and S. Information, “Smart nation singapore,”
https://www.smartnation.gov.sg/, (Accessed on 07/26/2024).

[6] D. INSIGHTS, “Smart cities and digital health — deloitte
insights,” https://www2.deloitte.com/xe/en/insights/focus/smart-city/
building-a-smart-city-with-smart-digital-health.html, 2022, (Accessed on
03/22/2023).

[7] Y. Fu and C. Soman, “Real-time data infrastructure at uber,” in Proceedings
of the 2021 International Conference on Management of Data, ser. SIGMOD
’21. New York, NY, USA: Association for Computing Machinery, 2021,
p. 2503–2516. [Online]. Available: https://doi.org/10.1145/3448016.3457552

[8] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching and
communications,” IEEE Access, vol. 5, pp. 6757–6779, 2017.

[9] C. Avasalcai, B. Zarrin, and S. Dustdar, “Edgeflow—developing and deploying
latency-sensitive iot edge applications,” IEEE Internet of Things Journal, vol. 9,
no. 5, pp. 3877–3888, 2022.

[10] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri, “Hetero-edge:
Orchestration of real-time vision applications on heterogeneous edge
clouds,” in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications. IEEE Press, 2019, p. 1270–1278. [Online]. Available:
https://doi.org/10.1109/INFOCOM.2019.8737478

[11] C. Jiang, T. Fan, H. Gao, W. Shi, L. Liu, C. Cérin, and
J. Wan, “Energy aware edge computing: A survey,” Computer
Communications, vol. 151, pp. 556–580, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S014036641930831X

[12] J. Hülsmann, J. Traub, and V. Markl, “Demand-based sensor data gathering with
multi-query optimization,” Proc. VLDB Endow., vol. 13, no. 12, p. 2801–2804,
Aug. 2020. [Online]. Available: https://doi.org/10.14778/3415478.3415479

[13] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, K. Karanasos, J. Padhye,
and G. Varghese, “Wanalytics: Geo-distributed analytics for a data intensive
world,” in Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 1087–1092. [Online].
Available: https://doi.org/10.1145/2723372.2735365

[14] D. O’Keeffe, T. Salonidis, and P. R. Pietzuch, “Frontier: Resilient
edge processing for the internet of things,” Proc. VLDB Endow.,
vol. 11, no. 10, pp. 1178–1191, 2018. [Online]. Available:
http://www.vldb.org/pvldb/vol11/p1178-okeeffe.pdf

[15] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni,
J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy,
“Storm@twitter,” in Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’14. New York, NY,
USA: Association for Computing Machinery, 2014, p. 147–156. [Online].
Available: https://doi.org/10.1145/2588555.2595641

[16] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas,
“Apache flink: Stream and batch processing in a single engine,” Bulletin of
the IEEE Computer Society Technical Committee on Data Engineering, 2015.

[17] S. Zeuch, A. Chaudhary, B. D. Monte, H. Gavriilidis, D. Giouroukis, P. M.
Grulich, S. Breß, J. Traub, and V. Markl, “The nebulastream platform for data
and application management in the internet of things,” in 10th Conference on
Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands,
January 12-15, 2020, Online Proceedings. www.cidrdb.org, 2020. [Online].
Available: http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf

[18] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for mobile
computing,” in IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, 2016, pp. 1–9.

[19] X. Chatziliadis, E. T. Zacharatou, A. Eracar, S. Zeuch, and V. Markl,
“Efficient placement of decomposable aggregation functions for
stream processing over large geo-distributed topologies,” Proc. VLDB
Endow., vol. 17, no. 6, pp. 1501–1514, 2024. [Online]. Available:
https://www.vldb.org/pvldb/vol17/p1501-chatziliadis.pdf

[20] G. Bartolomeo, M. Yosofie, S. Bäurle, O. Haluszczynski, N. Mohan, and
J. Ott, “Oakestra: A lightweight hierarchical orchestration framework for edge
computing,” in 2023 USENIX Annual Technical Conference (USENIX ATC
23). Boston, MA: USENIX Association, Jul. 2023, pp. 215–231. [Online].
Available: https://www.usenix.org/conference/atc23/presentation/bartolomeo

[21] B. J. Bonfils and P. Bonnet, “Adaptive and decentralized
operator placement for in-network query processing,” Telecommun.
Syst., vol. 26, no. 2-4, pp. 389–409, 2004. [Online]. Available:
https://doi.org/10.1023/B:TELS.0000029048.24942.65

[22] V. Cardellini, F. Lo Presti, M. Nardelli, and G. R. Russo, “Runtime adaptation
of data stream processing systems: The state of the art,” ACM Comput. Surv.,
vol. 54, no. 11s, sep 2022. [Online]. Available: https://doi.org/10.1145/3514496

[23] J. Karimov, T. Rabl, and V. Markl, “Astream: Ad-hoc shared stream
processing,” in Proceedings of the 2019 International Conference on
Management of Data, ser. SIGMOD ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 607–622. [Online]. Available:
https://doi.org/10.1145/3299869.3319884

[24] A. Chaudhary, J. Karimov, S. Zeuch, and V. Markl, “Incremental stream query
merging,” in Proceedings of the 26th International Conference on Extending
Database Technology, EDBT 2023, Ioannina, Greece, March 28-31, 2023.
OpenProceedings.org, 2023.

[25] S. Zeuch, E. T. Zacharatou, S. Zhang, X. Chatziliadis, A. Chaudhary,
B. D. Monte, D. Giouroukis, P. M. Grulich, A. Ziehn, and
V. Markl, “Nebulastream: Complex analytics beyond the cloud,” Open
J. Internet Things, vol. 6, no. 1, pp. 66–81, 2020. [Online]. Available:
https://www.ronpub.com/ojiot/OJIOT 2020v6i1n07 Zeuch.html

[26] A. Lepping, H. M. Pham, L. Mons, B. Rueb, P. M. Grulich,
A. Chaudhary, S. Zeuch, and V. Markl, “Showcasing data management
challenges for future iot applications with nebulastream,” Proc. VLDB
Endow., vol. 16, no. 12, p. 3930–3933, aug 2023. [Online]. Available:
https://doi.org/10.14778/3611540.3611588

[27] I. iris – intelligent sensing NA, “Passenger counting: The benefits of automated
systems. — iris intelligent sensing,” https://www.iris-sensing.com/us/products/
automatic-passenger-counting/, 2024, (Accessed on 07/26/2024).

[28] D. GmbH, “Mobility,” https://www.dilax.com/de/themen/mobility, 2023,
(Accessed on 10/08/2023).

[29] G. R. Review, “Db introducing new display system to make travel
more convenient,” https://www.globalrailwayreview.com/news/140633/
db-introducing-new-display-system-to-make-travel-more-convenient/, 2023,
(Accessed on 07/19/2024).

[30] D. Darsena, G. Gelli, I. Iudice, and F. Verde, “Sensing technologies for crowd
management, adaptation, and information dissemination in public transportation
systems: A review,” IEEE Sensors Journal, vol. 23, no. 1, pp. 68–87, 2023.

[31] S. Bera and K. Rao, “Estimation of origin-destination matrix from traffic
counts: the state of the art,” 2011.

[32] M. S. Kaiser, K. T. Lwin, M. Mahmud, D. Hajializadeh, T. Chaipimonplin,
A. Sarhan, and M. A. Hossain, “Advances in crowd analysis for urban
applications through urban event detection,” IEEE Transactions on Intelligent
Transportation Systems, vol. 19, no. 10, pp. 3092–3112, 2018.

[33] B. Zitung, “Narrow platforms: Passengers should only arrive shortly
before departure,” 2024, (Accessed on 08/03/2024). [Online]. Available:
https://www.bz-berlin.de/berlin/mitte/bahnsteige-zu-schmal-fahrgaeste

[34] V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli, “Optimal operator
placement for distributed stream processing applications,” in Proceedings
of the 10th ACM International Conference on Distributed and Event-based
Systems, DEBS ’16, Irvine, CA, USA, June 20 - 24, 2016, A. Gal, M. Weidlich,
V. Kalogeraki, and N. Venkasubramanian, Eds. ACM, 2016, pp. 69–80.
[Online]. Available: https://doi.org/10.1145/2933267.2933312

[35] A. Chaudhary, S. Zeuch, and V. Markl, “Governor: Operator placement for
a unified fog-cloud environment,” in Proceedings of the 23rd International
Conference on Extending Database Technology, EDBT 2020, Copenhagen,
Denmark, March 30 - April 02, 2020, A. Bonifati, Y. Zhou, M. A. V.
Salles, A. Böhm, D. Olteanu, G. H. L. Fletcher, A. Khan, and B. Yang,
Eds. OpenProceedings.org, 2020, pp. 631–634. [Online]. Available:
https://doi.org/10.5441/002/edbt.2020.81

[36] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes, “Omega:
Flexible, scalable schedulers for large compute clusters,” in Proceedings
of the 8th ACM European Conference on Computer Systems, ser. EuroSys
’13. New York, NY, USA: Association for Computing Machinery, 2013,
p. 351–364. [Online]. Available: https://doi.org/10.1145/2465351.2465386

[37] A. Flink, “Flink architecture — apache flink,” 2023, (Accessed on 12/01/2023).
[Online]. Available: https://nightlies.apache.org/flink/flink-docs-master/docs/
concepts/flink-architecture/#task-slots-and-resources

https://www.xovis.com/solutions/transportation
https://www.xovis.com/solutions/transportation
https://datafromsky.com/
https://business.teliacompany.com/internet-of-things/smart-public-transport
https://business.teliacompany.com/internet-of-things/smart-public-transport
https://www.smartnation.gov.sg/
https://www2.deloitte.com/xe/en/insights/focus/smart-city/building-a-smart-city-with-smart-digital-health.html
https://www2.deloitte.com/xe/en/insights/focus/smart-city/building-a-smart-city-with-smart-digital-health.html
https://doi.org/10.1145/3448016.3457552
https://doi.org/10.1109/INFOCOM.2019.8737478
https://www.sciencedirect.com/science/article/pii/S014036641930831X
https://doi.org/10.14778/3415478.3415479
https://doi.org/10.1145/2723372.2735365
http://www.vldb.org/pvldb/vol11/p1178-okeeffe.pdf
https://doi.org/10.1145/2588555.2595641
http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf
https://www.vldb.org/pvldb/vol17/p1501-chatziliadis.pdf
https://www.usenix.org/conference/atc23/presentation/bartolomeo
https://doi.org/10.1023/B:TELS.0000029048.24942.65
https://doi.org/10.1145/3514496
https://doi.org/10.1145/3299869.3319884
https://www.ronpub.com/ojiot/OJIOT_2020v6i1n07_Zeuch.html
https://doi.org/10.14778/3611540.3611588
https://www.iris-sensing.com/us/products/automatic-passenger-counting/
https://www.iris-sensing.com/us/products/automatic-passenger-counting/
https://www.dilax.com/de/themen/mobility
https://www.globalrailwayreview.com/news/140633/db-introducing-new-display-system-to-make-travel-more-convenient/
https://www.globalrailwayreview.com/news/140633/db-introducing-new-display-system-to-make-travel-more-convenient/
https://www.bz-berlin.de/berlin/mitte/bahnsteige-zu-schmal-fahrgaeste
https://doi.org/10.1145/2933267.2933312
https://doi.org/10.5441/002/edbt.2020.81
https://doi.org/10.1145/2465351.2465386
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/flink-architecture/#task-slots-and-resources
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/flink-architecture/#task-slots-and-resources

PREPRIN
T

[38] L. He, S. Yao, and W. Zhou, “An extended fine-grained conflict detection
method for shared-state scheduling in large scale cluster,” in Proceedings
of the 1st International Conference on Intelligent Information Processing,
ser. ICIIP ’16. New York, NY, USA: Association for Computing Machinery,
2016. [Online]. Available: https://doi.org/10.1145/3028842.3028871

[39] M. Luthra, B. Koldehofe, P. Weisenburger, G. Salvaneschi, and R. Arif,
“Tcep: Adapting to dynamic user environments by enabling transitions
between operator placement mechanisms,” in Proceedings of the 12th ACM
International Conference on Distributed and Event-Based Systems, ser. DEBS
’18. New York, NY, USA: Association for Computing Machinery, 2018,
p. 136–147. [Online]. Available: https://doi.org/10.1145/3210284.3210292

[40] Y. Huang, Z. Luan, R. He, and D. Qian, “Operator placement with
qos constraints for distributed stream processing,” in 7th International
Conference on Network and Service Management, CNSM 2011, Paris,
France, October 24-28, 2011. IEEE, 2011, pp. 1–7. [Online]. Available:
https://ieeexplore.ieee.org/document/6103961/

[41] T. Karnagel, D. Habich, and W. Lehner, “Adaptive work placement
for query processing on heterogeneous computing resources,” Proc.
VLDB Endow., vol. 10, no. 7, pp. 733–744, 2017. [Online]. Available:
http://www.vldb.org/pvldb/vol10/p733-karnagel.pdf

[42] A. D. S. Veith, M. D. de Assunção, and L. Lefèvre, “Latency-aware placement
of data stream analytics on edge computing,” in Service-Oriented Computing
- 16th International Conference, ICSOC 2018, Hangzhou, China, November
12-15, 2018, Proceedings, ser. Lecture Notes in Computer Science, C. Pahl,
M. Vukovic, J. Yin, and Q. Yu, Eds., vol. 11236. Springer, 2018, pp.
215–229. [Online]. Available: https://doi.org/10.1007/978-3-030-03596-9 14

[43] M. Vuppalapati, J. Miron, R. Agarwal, D. Truong, A. Motivala, and
T. Cruanes, “Building an elastic query engine on disaggregated storage,” in
17th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020, R. Bhagwan
and G. Porter, Eds. USENIX Association, 2020, pp. 449–462. [Online].
Available: https://www.usenix.org/conference/nsdi20/presentation/vuppalapati

[44] Apache, “Hadoop on demand,” 2007, (Accessed on 05/04/2024). [Online].
Available: https://svn.apache.org/repos/asf/hadoop/common/tags/release-0.17.
1/docs/hod.html

[45] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica, “Mesos: a platform for fine-grained resource
sharing in the data center,” in Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI’11. USA:
USENIX Association, 2011, p. 295–308.

[46] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, “The notions
of consistency and predicate locks in a database system,” Commun.
ACM, vol. 19, no. 11, p. 624–633, nov 1976. [Online]. Available:
https://doi.org/10.1145/360363.360369

[47] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed systems: concepts
and design. pearson education, 2005.

[48] S. T. Andrew, Distributed Operating Systems. Prentice-Hall International
Edition, 1995.

[49] S. T. Andrew and B. Herbert, Modern operating systems. Pearson Education,
2015.

[50] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-
Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, and T. Watteyne, “Fit
iot-lab: A large scale open experimental iot testbed,” in 2015 IEEE 2nd World
Forum on Internet of Things (WF-IoT), 2015, pp. 459–464.

[51] A. R. Urke, Kure, and K. Øvsthus, “Autonomous flow-based tsch scheduling
for heterogeneous traffic patterns: Challenges, design, simulation, and testbed
evaluation,” IEEE Open Journal of the Communications Society, vol. 4, pp.
2357–2372, 2023.

[52] ——, “Experimental evaluation of the layered flow-based autonomous tsch
scheduler,” IEEE Access, vol. 11, pp. 3970–3982, 2023.

[53] X. Chatziliadis, E. T. Zacharatou, A. Eracar, S. Zeuch, and V. Markl,
“Efficient placement of decomposable aggregation functions for
stream processing over large geo-distributed topologies,” Proc. VLDB
Endow., vol. 17, no. 6, pp. 1501–1514, 2024. [Online]. Available:
https://www.vldb.org/pvldb/vol17/p1501-chatziliadis.pdf

[54] OpenCellid, “Opencellid - largest open database of cell towers and geolocation
- by unwired labs,” https://opencellid.org/, 2024, (Accessed on 04/22/2024).

[55] V. V. B.-B. GmbH, “Vbb timetable data via gtfs — open data berlin,”
https://www.vbb.de/vbb-services/api-open-data/datensaetze/, 2024, (Accessed
on 07/26/2024).

[56] NebulaStream, “nebulastream/topology-change-generator: This repository
contains code to produce a collection of topology changes generated
by mobile devices,” (Accessed on 08/02/2024). [Online]. Available:
https://github.com/nebulastream/topology-change-generator

[57] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:
Cluster computing with working sets.” HotCloud, vol. 10, no. 10-10, p. 95,
2010.

[58] Z. Shen, V. Kumaran, M. J. Franklin, S. Krishnamurthy, A. Bhat, M. Kumar,
R. Lerche, and K. Macpherson, “Csa: Streaming engine for internet of things.”
IEEE Data Eng. Bull., vol. 38, no. 4, pp. 39–50, 2015.

[59] D. O’Keeffe, T. Salonidis, and P. Pietzuch, “Frontier: Resilient edge processing
for the internet of things,” Proceedings of the VLDB Endowment, vol. 11,
no. 10, pp. 1178–1191, 2018.

[60] P. Agnihotri, B. Koldehofe, C. Binnig, and M. Luthra, “Zero-shot cost
models for parallel stream processing,” in Proceedings of the Sixth
International Workshop on Exploiting Artificial Intelligence Techniques for
Data Management, 2023, pp. 1–5.

[61] P. Agnihotri, B. Koldehofe, P. Stiegele, R. Heinrich, C. Binnig, and M. Luthra,
“Zerotune: Learned zero-shot cost models for parallelism tuning in stream
processing,” 2024.

[62] R. Heinrich, C. Binnig, H. Kornmayer, and M. Luthra, “Costream: Learned
cost models for operator placement in edge-cloud environments,” arXiv
preprint arXiv:2403.08444, 2024.

[63] L. Mai, K. Zeng, R. Potharaju, L. Xu, S. Suh, S. Venkataraman, P. Costa,
T. Kim, S. Muthukrishnan, V. Kuppa et al., “Chi: A scalable and programmable
control plane for distributed stream processing systems,” Proceedings of the
VLDB Endowment, vol. 11, no. 10, pp. 1303–1316, 2018.

[64] B. Del Monte, S. Zeuch, T. Rabl, and V. Markl, “Rhino: Efficient management
of very large distributed state for stream processing engines,” in Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data,
2020, pp. 2471–2486.

[65] A. Bartnik, B. Del Monte, T. Rabl, and V. Markl, “On-the-fly reconfiguration
of query plans for stateful stream processing engines,” BTW 2019, 2019.

[66] Y. Zhu, E. A. Rundensteiner, and G. T. Heineman, “Dynamic plan migration
for continuous queries over data streams,” in Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, ser. SIGMOD
’04. New York, NY, USA: Association for Computing Machinery, 2004,
p. 431–442. [Online]. Available: https://doi.org/10.1145/1007568.1007617

[67] M. Hoffmann, A. Lattuada, F. McSherry, V. Kalavri, J. Liagouris, and
T. Roscoe, “Megaphone: Latency-conscious state migration for distributed
streaming dataflows,” Proceedings of the VLDB Endowment, vol. 12, no. 9,
pp. 1002–1015, 2019.

[68] Y. Wu and K. Tan, “Chronostream: Elastic stateful stream computation in
the cloud,” in 31st IEEE International Conference on Data Engineering, ICDE
2015, Seoul, South Korea, April 13-17, 2015, J. Gehrke, W. Lehner, K. Shim,
S. K. Cha, and G. M. Lohman, Eds. IEEE Computer Society, 2015, pp.
723–734. [Online]. Available: https://doi.org/10.1109/ICDE.2015.7113328

[69] S. Rajadurai, J. Bosboom, W. Wong, and S. P. Amarasinghe, “Gloss:
Seamless live reconfiguration and reoptimization of stream programs,” in
Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2018, Williamsburg, VA, USA, March 24-28, 2018, X. Shen, J. Tuck,
R. Bianchini, and V. Sarkar, Eds. ACM, 2018, pp. 98–112. [Online].
Available: https://doi.org/10.1145/3173162.3173170

[70] Z. Wang, S. Ni, A. Kumar, and C. Li, “Fries: Fast and consistent
runtime reconfiguration in dataflow systems with transactional guarantees
(extended version),” CoRR, vol. abs/2210.10306, 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2210.10306

[71] E. Volnes, T. Plagemann, and V. Goebel, “To migrate or not to migrate:
An analysis of operator migration in distributed stream processing,” IEEE
Communications Surveys & Tutorials, vol. 26, no. 1, pp. 670–705, 2024.

[72] T. Härder, “Observations on optimistic concurrency control schemes,”
Information Systems, vol. 9, no. 2, pp. 111–120, 1984. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0306437984900206

[73] T. Härder and K. Rothermel, “Concurrency control issues in nested
transactions,” The VLDB journal, vol. 2, pp. 39–74, 1993.

[74] P. A. Bernstein and N. Goodman, “Concurrency control in distributed database
systems,” ACM Computing Surveys (CSUR), vol. 13, no. 2, pp. 185–221, 1981.

[75] H. Chen, C. Li, C. Zheng, C. Huang, J. Fang, J. Cheng, and J. Zhang,
“G-tran: A high performance distributed graph database with a decentralized
architecture,” Proc. VLDB Endow., vol. 15, no. 11, pp. 2545–2558, 2022.
[Online]. Available: https://www.vldb.org/pvldb/vol15/p2545-chen.pdf

[76] P. Fuchs, J. Giceva, and D. Margan, “Sortledton: a universal, transactional
graph data structure,” Proc. VLDB Endow., vol. 15, no. 6, pp. 1173–1186,
2022. [Online]. Available: https://www.vldb.org/pvldb/vol15/p1173-fuchs.pdf

[77] D. B. Jackson, Q. Snell, and M. J. Clement, “Core algorithms of the maui sched-
uler. in job scheduling strategies for parallel processing.” in Revised Papers from

https://doi.org/10.1145/3028842.3028871
https://doi.org/10.1145/3210284.3210292
https://ieeexplore.ieee.org/document/6103961/
http://www.vldb.org/pvldb/vol10/p733-karnagel.pdf
https://doi.org/10.1007/978-3-030-03596-9_14
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati
https://svn.apache.org/repos/asf/hadoop/common/tags/release-0.17.1/docs/hod.html
https://svn.apache.org/repos/asf/hadoop/common/tags/release-0.17.1/docs/hod.html
https://doi.org/10.1145/360363.360369
https://www.vldb.org/pvldb/vol17/p1501-chatziliadis.pdf
https://opencellid.org/
https://www.vbb.de/vbb-services/api-open-data/datensaetze/
https://github.com/nebulastream/topology-change-generator
https://doi.org/10.1145/1007568.1007617
https://doi.org/10.1109/ICDE.2015.7113328
https://doi.org/10.1145/3173162.3173170
https://doi.org/10.48550/arXiv.2210.10306
https://www.sciencedirect.com/science/article/pii/0306437984900206
https://www.vldb.org/pvldb/vol15/p2545-chen.pdf
https://www.vldb.org/pvldb/vol15/p1173-fuchs.pdf

PREPRIN
T

the 7th International Workshop on Job Scheduling Strategies for Parallel Pro-
cessing, ser. JSSPP ’01. Berlin, Heidelberg: Springer-Verlag, 2001, p. 87–102.

[78] S. Iqbal, R. Gupta, and Y.-C. Fang, “Planning considerations for job scheduling
in hpc clusters,” Dell Power Solutions, pp. 133–136, 2005.

[79] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes,
“Large-scale cluster management at google with borg,” in Proceedings of
the Tenth European Conference on Computer Systems, ser. EuroSys ’15.
New York, NY, USA: Association for Computing Machinery, 2015. [Online].
Available: https://doi.org/10.1145/2741948.2741964

https://doi.org/10.1145/2741948.2741964

	Introduction
	Preliminaries
	System Overview
	Change Event Applicator
	Change Events
	Processing Change Events

	Delta Computer
	Dependencies Among Change Log Entries
	Query Delta
	Delta Computer

	Operator Placement Amender
	Placement Amendment
	Concurrent Placement Amendment: Challenges and Solutions
	Updating Invalid Placements

	Evaluation
	Experimental Setup
	Experiments
	Effect of Incremental and Concurrent Amendments
	Scalability
	Pessimistic Vs. Optimistic Amendment Strategies
	Effect of Query Additions and Removals
	Effect of Topology Change Events
	Query Execution Latency

	Related Work
	Conclusion
	References

