
Scaling a Public Transport Monitoring System to
Internet of Things Infrastructures

Haralampos Gavriilidis1 Adrian Michalke2 Laura Mons2 Steffen Zeuch1,2 Volker Markl1,2
1Technische Universität Berlin 2DFKI GmbH

{gavriilidis,volker.markl}@tu-berlin.de,{adrian.michalke,laura.mons,steffen.zeuch}@dfki.de

ABSTRACT
Applications for the Internet of Things (IoT) face several chal-
lenges when it comes to exploiting the underlying infrastructure
for data management operations efficiently. IoT infrastructures
consist of heterogeneous compute nodes and geographically dis-
tributed network topologies. Today’s IoT applications offload data
management to cloud-based stream processing engines (SPEs).
However, this offloading represents a severe bottleneck that
might hinder upcoming large-scale IoT applications in the future.
In our demonstration, we showcase this problem using a public
transport application as a potential large-scale IoT application.
Our application consists of an interactive map for monitoring
public transport vehicles and current demand. We implement this
application on top of NebulaStream (NES), a new data manage-
ment system that is designed for the IoT. In contrast to common
cloud-based SPEs, NES answers queries by unifying cloud, fog,
and sensor nodes under one system. Thus, NES minimizes net-
work traffic and avoids resource over-utilization by considering
the physical network topology and available compute nodes. The
goal of this demonstration is to reveal the shortcomings of cur-
rent system designs for large-scale IoT applications. Furthermore,
we showcase how NES addresses these shortcomings and thus
enables future large-scale IoT applications.

1 INTRODUCTION
Applications for the IoT, such as reporting and monitoring dash-
boards, consist of real-time data preprocessing and data mining
tasks. Such applications visualize high-velocity data streams,
resulting from large sensor networks, which flow through het-
erogeneous hardware and network topologies to the cloud.

Sensor streams naturally match the stream processing pro-
gramming abstractions provided by cloud-based SPEs. Thus to-
day’s IoT applications use such systems to offload data man-
agement tasks. SPEs exploit the on-demand scalability of cloud
resources to process compute-intensive data management work-
loads efficiently. However, state-of-the-art SPEs, such as Apache
Flink [4], were designed for cloud environments composed of
homogeneous high-performance hardware, where nodes are in-
terconnected through high-speed network connections.

In contrast, IoT infrastructures have different characteristics
regarding compute nodes and network connections [3]. In this
new type of infrastructure, nodes are heterogeneous, geographi-
cally distributed, and sparsely interconnected through unstable
networks. Geographically distributed sensor nodes continuously
generate data, resulting in a large number of data streams with
small-sized records. Intermediate nodes, also called fog nodes,
provide network resources to route sensor data to the cloud. Cer-
tain nodes provide compute resources that support executing data

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

management tasks. In particular, intermediate nodes range from
low-end devices, such as system-on-a-chip devices, to high-end
nodes, e.g., desktop computers and server racks. Cloud-based
SPEs ignore intermediate nodes when distributing their load,
hindering IoT applications from scaling beyond the cloud.

To scale data management tasks on all participating devices
of an IoT infrastructure, the design of data management systems
must be revisited. Recent work points out that to exploit resources
of every node in an IoT infrastructure, data management systems
must employ infrastructure-aware execution strategies [11]. A
data management system for the IoT should leverage the scale-
out capabilities of the cloud, and at the same time, exploit the
resources of intermediate nodes. In particular, cloud nodes can
scale resources for compute-intensive tasks within the cloud,
while intermediate nodes apply fog computing techniques [6–8]
to reduce intermediate results. As a result, network traffic and
cloud resources are minimized. However, cloud-based approaches
utilize intermediate nodes only to forward data.

NebulaStream [11] is an application and data management
platform designed for the upcoming IoT era. NES addresses the
mentioned IoT challenges by unifying sensor, fog, and cloud
nodes into a single system. To this end, NES combines research
from sensor network, distributed, and database system commu-
nities. This allows NES to transparently optimize and efficiently
execute data management workloads across IoT infrastructures.
The unified sensor-fog-cloud approach enables scaling the num-
ber of sensors in data management and visualization applications.

In our demonstration, we simulate an IoT infrastructure with
Raspberry PIs and showcase a visualization application for a pub-
lic transport system. Our application aims to provide real-time
monitoring for public transport systems and suggestions for vehi-
cle rescheduling. Therefore, it detects critical geographical areas,
i.e., underserved areas with high demand. Our GUI consists of an
interactive map, which visualizes real-time public transport vehi-
cles and potential passengers. During the demonstration, visitors
will interact with the map by filtering objects and configuring
the clustering algorithm employed for critical area detection.

Furthermore, visitors will explore potential execution strate-
gies for datamanagement tasks on IoT infrastructures.We demon-
strate how all participating nodes of a public transport system
can be part of a query and how this influences performance and
resource utilization. Our application demonstrates both central-
ized system designs and new designs enabled by NES. Overall,
we showcase that in contrast to cloud-based SPEs, NES allows
large-scale applications on IoT infrastructures, and thus enables
a variety of upcoming IoT application use cases.

The rest of this paper is structured as follows. In Section 2, we
discuss IoT application scenarios and challenges related to data
management. In Section 3, we provide a brief overview of NES’s
design and architecture. After that, in Section 4, we present our
demonstration scenario and finally conclude in Section 5.

Demonstration

 

 

Series ISSN: 2367-2005 627 10.5441/002/edbt.2020.80

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.80


Cloud Applications

Base Station

Vehicle Sensor

Potential 
Passengers

External Data 
Sources

Figure 1: Exemplary IoT Infrastructure.

2 DATA MANAGEMENT IN THE IOT
In the following, we introduce a representative IoT scenario (Sec-
tion 2.1) and discuss data management challenges (Section 2.2).

2.1 IoT Application Scenarios
In Figure 1, we illustrate a public transport system as a represen-
tative large-scale IoT scenario. In our scenario, the cloud hosts
applications, i.e., a real-time dashboard that monitors the under-
lying IoT infrastructure. The infrastructure consists of geograph-
ically distributed and constantly moving sensors, base stations,
and cloud nodes. In particular, potential passengers with mobile
phones and vehicles with attached sensors move within a city
and transmit measurements to base stations in regular time in-
tervals. Base stations are geographically distributed nodes that
collect and forward sensor streams to the cloud. Cloud nodes
receive the data from the base stations and enrich it with exter-
nal sources, e.g., databases with weather or air pollution data.
Finally, applications consume the preprocessed sensor stream,
apply additional processing, and visualize the result for users.

Public transport agencies could employ such applications
to enable various smart city optimizations. Examples include
rescheduling vehicles based on the demand of potential passen-
gers, air pollution reduction by traffic light control mechanisms,
and ad-hoc route planning to cope with traffic jams.

2.2 IoT Infrastructure Challenges
Today’s IoT applications use data acquisition systems for data
ingestion [7, 9, 10] and cloud-based SPEs for data management
operations. IoT infrastructures differ significantly from cloud
infrastructures, and thus pose several challenges for data man-
agement operations. Zeuch et al. [11] point out that cloud-based
SPEs rely on assumptions that IoT infrastructures violate. First,
fog and cloud paradigms assume different network topologies. In
particular, processing nodes in cloud-based SPEs are densely con-
nected, i.e., each node has stable connections with all other nodes.
In contrast, the physical IoT topology predefines the network
paths from data sources (sensors) to data sinks (cloud). Therefore,
every node accesses only the subset of data that is routed through
it. For example, in the IoT infrastructure depicted in Figure 1,
base stations located in the west of the city are not able to directly
access sensor streams that are generated on the east of the city.

Second, both paradigms expect different types of input streams.
In an IoT infrastructure, millions of sensors constantly produce
data streams. Those streams consist of small records that possibly
capture physical phenomena, such as earthquakes, and might pro-
duce data at infrequent intervals. In contrast, cloud-based SPEs

expect a few large-volume data streams at constant producing
intervals. Furthermore, to ingest the sensor streams, cloud-based
systems utilize message brokers, such as Apache Kafka.

In sum, IoT applications relying on cloud-based data man-
agement paradigms do not exploit intermediate nodes. The as-
sumptions of cloud-based SPEs regarding physical topologies and
types of incoming streams do not hold in IoT infrastructures.

3 NEBULASTREAM PLATFORM OVERVIEW
In the following, we present specific aspects of NES. We refer the
reader to our previous work [11] for a detailed description of NES.
First, in Section 3.1, we outline the limitations of cloud-based
SPEs that prevent applications from exploiting IoT infrastructures.
After that, we describe NES and its architecture in Section 3.2.

3.1 Limitations of State-of-the-art SPEs
In the following, we discuss two important features that hinder
cloud-based SPEs to efficiently support future IoT scenarios.

Exploiting Intermediate Nodes: Applications relying on
cloud-based SPEs do not exploit all participating heterogeneous
intermediate and sensor nodes, since data management tasks
are executed only in the cloud layer. For example, consider a
simple aggregation task, e.g., counting the number of vehicles
per geographical area. To execute this task, cloud-based systems
would have to wait until intermediate nodes propagate data to the
cloud. However, in the described IoT infrastructure, intermediate
nodes can execute this task at an earlier stage and forward pre-
aggregated intermediate results.

Minimizing Network Resources: If a set of running queries
requires only a subset of the sensor data, acquisitional data pro-
cessing avoids redundant sensor reads [7]. Another technique to
further reduce network traffic between sensors and cloud is to
adapt sensor sampling frequencies based on the query require-
ments [9]. For example, a vehicle could acquire and send its data
only if it is located in a certain area [11]. These techniques are
not available in cloud-based SPEs, but allow for scaling IoT data
processing by minimizing redundant data traffic.

3.2 Architecture
In the following, we describe NES’s architecture, illustrated in
Figure 2. We focus only on the components that are related to
our application scenario and omit components that are out of the
scope of this demonstration, e.g., fault-tolerance mechanisms.

Optimization: NES exposes APIs for common data process-
ing operations, as found in cloud-bases SPEs, extending those
with fog-specific abstractions. IoT applications, e.g., our visualiza-
tion application, submit queries to the underlying data streams,
both ad-hoc and long-running. To allow for multi-query opti-
mization, the Query Manager maintains a catalog of submitted
queries. Query optimization and execution in NES proceeds as
follows. First, NES translates user queries to logical query plans.
After that, the plan is handed over to the optimizer. The NES
Optimizer consults the NES Topology Manager, which provides
information about the infrastructure status and the performance
statistics. After optimizing the execution plan, it is handed over
to the NES Deployment Manager.

Deployment and Execution: NES’s execution plan maps
segmented sub-plans to participating intermediate, or cloud nodes.
Each segment contains processing instructions (tasks), as well as
information about I/O operations. The NES Deployment Manager
is responsible for transmitting the sub-plans to each node. After

628



receiving a sub-plan, a node initializes the necessary network
connections and starts the execution utilizing its task scheduler.

Monitoring: During runtime, the NES Topology Manager
monitors the execution, and reacts to changes incrementally, e.g.,
by transitioning smoothly between execution plans. To this end,
the NES Topology Manager collects hardware statistics, such as
CPU and main memory utilization, and additional metadata, such
as selectivities and data distributions. NES nodes are designed to
handle several scenarios autonomously, e.g., transient network
failures. Once failed network connections are restored, topology
updates are propagated to the Topology Manager.

 

External 
Services

NebulaStream 
Components

NodeNodeNES Nodes
NodeNodeNES Nodes

NodeNodeSensors

Control Messages
Query Submission
Data Streams

NES Coordinator

NES 
Deployment 

Manager

NES 
Topology 
Manager

NES 
Optimizer

NES Query 
Manager

Sensor Layer Fog Layer Cloud Layer

Figure 2: Simplified NES architecture overview.

The holistic view of the underlying infrastructure and the sub-
mitted queries allow NES to optimize for specific combinations
of queries and topologies. In contrast, cloud-based SPEs handle
incoming queries independently and schedule queries with exter-
nal cluster resource management frameworks. Its characteristics
allow NES to overcome limitations of cloud-based SPEs in IoT
infrastructures, and to offer scalable data management for the
upcoming IoT application scenarios.

4 DEMONSTRATION
In the following, we describe our user interface (Section 4.1),
demonstration setup (Section 4.2), and application (Section 4.3).

4.1 User Interface
Visitors interact with our application through a GUI, as shown in
Figure 3. Our GUI consists of an interactive map, which includes
moving objects that are either potential passengers or public
transport vehicles (trains, buses, etc.). Our application aims at
detecting crowded geographical areas, that public transport ve-
hicles underserve. The application clusters potential passengers
according to their geolocation. When public transport vehicles
underserve a cluster of potential passengers, our application no-
tifies the visitor by highlighting the respective clusters on the
map. The resulting notifications are useful for public transport
agencies, e.g., to schedule vehicles for crowded areas.

Additionally, our GUI allows filtering by moving the visible
map area and by selecting vehicle types. The visitor configures the
visible objects and the clustering algorithm by changing parame-
ters, e.g., object distance and cluster size, as shown in Figure 3 1 .
A main feature is choosing between processing modes 2 that
represent the solution space for IoT applications. To show the im-
plications of each mode, we provide performance metrics, such as
ad-hoc application statistics 3 and resource utilization 4 . Our
demonstration aims at showcasing the strengths and weaknesses
of each solution in a hands-on experience.

4.2 Demo Setup
In the following, we describe the setup of our demonstration.

Hardware: For our demonstration scenario, we assume a
topology where each public transport vehicle carries a sensor
transmitting information to base stations at regular time inter-
vals. Potential passengers send their geolocation to base stations,
e.g., through a mobile application. We use Raspberry PIs as base
stations (fog nodes), and a mobile workstation as a cloud node.

Software: Our application consists of a frontend and a back-
end component. The backend uses NES to offload data manage-
ment operations. The backend acts as a sink for NES, i.e., it is
an intermediator between multiple user frontends and NES. It
coordinates query transmission to NES, forwarding results to
connected frontends. Our application backend is implemented in
Python and utilizes the Flask microframework. The frontend is
implemented in Javascript, utilizes websockets for communica-
tion, Leaflet for its map, and Grafana for monitoring.

Dataset: We simulated two sensor streams to compose our
dataset. First, we simulated vehicle sensor data using real-world
General Transit Feed Specification datasets [1] (enhanced with
vehicle occupancy). Second, we simulated potential passengers
using the Simulation of Urban Mobility (SUMO) generator [2].
We merge the two resulting datasets, and partition them by ge-
olocation, to resemble geographically distributed base stations.
We utilize sensor data from the city of Berlin, however, our appli-
cation supports all sensor streams following the GTFS schema.

4.3 Application
We highlight two aspects of an IoT data management application
scenario. First, we describe our deployment process, duringwhich
our application transforms user queries to execution plans and
deploys them on the underlying nodes. Second, we demonstrate
several execution strategies by deploying different execution
plans and revealing their implications on resource utilization.

4.3.1 Query and Deployment. Every time a visitor interacts
with the map and its options, our application sends NES a new
query with the following parametrized operations.

Map Bounding Box: These parameters filter vehicles and po-
tential passengers located within a bounding box. The bounding
box is defined by two coordinates and is automatically computed
by the map area currently viewed by the visitor.

Vehicles and Passengers: These parameters filter potential
passengers and selected vehicle types, e.g., bus, train, or subway.

Clustering:These parameters, e.g., object distance and cluster
size, are related to our clustering algorithm (DBSCAN [5]).

Overall, our application composes and deploys queries that
filter sensor records, cluster them by geolocation, calculate the
average vehicle capacity within each cluster, and yield critical
areas depending on user-defined thresholds.

In this application, NES allows us to reduce data as early as
possible in the IoT infrastructure. Especially in visualization sce-
narios, data reduction is a key performance factor, and naturally
occurs because users are seldomly interested in all sensor data.
To this end, NES provides the option to filter data needed for vi-
sualization purposes already in the intermediate (fog) layer. The
resulting data reduction is two-fold. First, NES uses on-demand
data acquisition techniques to only gather sensor data that is cur-
rently required to answer a query. Second, NES uses intermediate
nodes to evict unnecessary data close to the sensors. Both data
reductions minimize the overall network traffic within the IoT
infrastructure, as well as data that has to be sent to applications.

629



Figure 3: Demo GUI with potential passengers, buses, and trains. The application clusters potential passengers (green) by
area density, and marks clusters red for insufficiently covered areas. The visitor may configure the query parameters 1 ,
the processing modes 2 , and observe query information 3 and runtime statistics about resource utilization 4 .

4.3.2 Query Execution. In Section 3, we introduced the NES
Optimizer, which produces, and evaluates potential execution
plans. Each execution plan contains a mapping between NES
operators and nodes in the IoT infrastructure. The optimizer
would come up with three execution plans that resemble cloud-
based, fog-based, and unified approaches, which we refer to as
processing modes. Note that in our demonstration, we use NES
to reproduce all processing modes.

The graphs in Figure 3 2 illustrate the processing modes. Ver-
tices represent sensor, fog and cloud nodes, while edges define the
network connections between them. We color filter operations
green, and clustering operations blue. In our demonstration, visi-
tors can choose between the following three processing modes.

Cloud Mode: NES places all operations on the cloud, and uti-
lizes the remaining nodes only for data forwarding. Performance
metrics will reveal that the main workload gathers in the cloud
layer, while resources of intermediate fog nodes remain unused.

Fog Mode: NES places all operations on the intermediate
layer. Filtering on the fog reduces network traffic. CPU, and RAM
utilization on the fog nodes increases significantly.

NESMode:NES places filter operations on fog nodes and clus-
tering operations on the cloud. Performance metrics show that
network traffic, CPU and RAM utilization remain at moderate
levels, since operations are evenly distributed.

In sum, our demonstration showcases how future data manage-
ment systems allow exploiting all resources of an IoT infrastruc-
ture, instead of relying solely on the cloud. Our public transport
monitoring system and its underlying topology resemble com-
mon IoT application scenarios.

5 CONCLUSION
In this paper, we highlighted data processing challenges in the
IoT domain, and described a representative IoT scenario, a public
transport system. Our application, a public transport monitor-
ing system, visualizes vehicles and potential passengers on an
interactive map, and detects underserved areas. Our application

translates user actions on its GUI to NES queries. We offload data
management tasks on the IoT infrastructure in different ways,
using potential NES execution plans. The visitor can explore
these execution plans and observe their implications on resource
utilization. Our demonstration shows that existing systems do
not address scaling data management on IoT infrastructures.

ACKNOWLEDGMENTS
This work was funded by the German Ministry for Education
and Research as BIFOLD - Berlin Institute for the Foundations
of Learning and Data (ref. 01IS18025A and ref 01IS18037A). The
authors would like to thank the NebulaStream team for their
insightful comments and fruitful discussions.

REFERENCES
[1] 2019. General Transit Feed Specification. https://gtfs.org/. Accessed: 2019-11-

22.
[2] 2019. SUMO - Simulation of Urban Mobility. http://sumo.dlr.de/index.html.

Accessed: 2019-11-14.
[3] Flavio Bonomi et al. 2012. Fog computing and its role in the internet of

things. In Proceedings of the first edition of the MCC workshop on Mobile cloud
computing. ACM, 13–16.

[4] Paris Carbone et al. 2015. Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering 36, 4 (2015).

[5] Martin Ester et al. 1996. A Density-based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining (KDD’96). 226–231.

[6] Alberto Lerner et al. 2019. The Case for NetworkAcceleratedQuery Processing.
In CIDR.

[7] Samuel R Madden et al. 2005. TinyDB: an acquisitional query processing
system for sensor networks. ACM Transactions on database systems (TODS)
30, 1 (2005), 122–173.

[8] Dan O’Keeffe et al. 2018. Frontier: Resilient edge processing for the internet
of things. Proceedings of the VLDB Endowment 11, 10 (2018), 1178–1191.

[9] Jonas Traub et al. 2017. Optimized on-demand data streaming from sensor
nodes. In Proceedings of the 2017 Symposium on Cloud Computing. ACM, 586–
597.

[10] Jonas Traub et al. 2019. SENSE: Scalable Data Acquisition from Distributed
Sensors with Guaranteed Time Coherence. arXiv preprint arXiv:1912.04648
(2019).

[11] Steffen Zeuch et al. 2020. The NebulaStream Platform: Data and Application
Management for the Internet of Things. In CIDR.

630


	Scaling a Public Transport Monitoring System to Internet of Things InfrastructuresHaralampos Gavriilidis, Adrian Michalke, Laura Mons, Steffen Zeuch, Volker Markl

